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1. Vectors

1.1. Exercise 13.2.18. Given a = 4i+ j, b = i− 2j. Find a+b, 2a+ 3b, |a|, and
|a − b|.

Solution. a + b = 5i − j, 2a + 3b = 11i − 4j, |a| =
√

42 + 12, a − b = 3i + 3j, so

|a − b| = 3
√

2. �

1.2. Exercise 13.2.35. Find the unit vectors that are parallel to the tangent line
to the parabola y = x2 at the point (2, 4).

Solution. Tangent line has slope y′ = 2x with x = 2, so slope 4. Take 〈1, 4〉 and

normalise to get
〈

1/
√

17, 4/
√

17
〉

. We also get the negative of that. �

1.3. Exercise 13.2.45. Use vectors to prove that the line joining the midpoints of
two sides of a triangle is parallel to the third side and half its length.

Solution. Let
−−→
AB = 2a,

−−→
BC = 2b. Then the vector representing the midline is

a + b whereas the third side is
−→
AC =

−−→
AB +

−−→
BC = 2(a + b). �

2. Dot Products

2.1. Basics. If a = 〈a1, a2, a3〉 and b = 〈b1, b2, b3〉 then the dot product is given by
a · b = a1b1 + a2b2 + a3b3.

If θ is the angle between vectors a and b then a · b = |a| |b| cos θ.

2.2. Exercise 13.3.7. Given a = i − 2j + 3k, b = 5i + 9k. Find a · b.

Solution. We have a · b = 1 · 5 − 2 · 0 + 3 · 9 = 32. �

2.3. Exercise 13.3.56. Suppose that all sides of a quadrilateral are equal in length
and opposite sides are parallel. Use vector methods to show that the diagonals are
perpendicular.

Solution. Let a and b represent two sides, then |a| = |b|. The two diagonals
are a + b and a − b. They are perpendicular if their dot product is zero. But

(a + b) · (a − b) = a · a− b · b = |a|2 − |b|2 = 0, as desired. �

2.4. Exercise 13.3.60. Show that if a + b and a − b are orthogonal, then the
vectors a and b must have the same length.

Solution. Notice 0 = (a+b) · (a−b) = a · a−b ·b = |a|2 − |b|2 = (|a|+ |b|)(|a| −
|b|). �
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3. Cross Products

3.1. Basics. If a = 〈a1, a2, a3〉 and b = b1, b2, b3 then the cross product is given by
the mnemonic

a × b =

∣

∣

∣

∣

∣

∣

i j k

a1 a2 a3

b1 b2 b3

∣

∣

∣

∣

∣

∣

.

If θ is the angle between vectors a and b then |a × b| = |a| |b| sin θ, which is the
area of the parallelogram determined by the vectors.

3.2. Exercise 13.4.18. If a = 〈3, 1, 2〉, b = 〈−1, 1, 0〉, and c = 〈0, 0,−4〉, show
that a × (b × c) 6= (a × b) × c.

Solution. Notice that a× b = 〈−2,−2, 4〉, so (a×b)× c = 〈8,−8, 0〉. But b× c =
〈−4,−4, 0〉, so a × (b × c) = 〈8,−8,−8〉. �

3.3. Exercise 13.4.30. Let P (2, 1, 5), Q(−1, 3, 4), R(3, 0, 6). Find a nonzero vec-
tor orthogonal to the plane through the points P , Q, and R, and find the area of
triangle PQR.

Solution. Notice
−−→
PQ = 〈−3, 2,−1〉 and

−→
PR = 〈1,−1, 1〉, so

−−→
PQ × −→

PR = 〈1, 2, 1〉.
This vector works. And the area of triangle is 1

2
|〈1, 2, 1〉| =

√
6/2. �

3.4. Exercise 13.4.48. Prove that

(a × b) · (c × d) =

∣

∣

∣

∣

a · c b · c
a · d b · d

∣

∣

∣

∣

.

Solution. Use a·(b×c) = (a×b)·c and a×(b×c) = (a·c)b−(a·b)c. Indeed, we get
(a×b)·(c×d) = a·(b×(c×d)) = a·((b·d)c)−(b·c)d) = (a·c)(b·d)−(a·d)(b·c),
as desired. �
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