MATH 32A DISCUSSION

JED YANG

1. Vectors

1.1. Exercise 13.2.18. Given $\mathbf{a}=4 \mathbf{i}+\mathbf{j}, \mathbf{b}=\mathbf{i}-2 \mathbf{j}$. Find $\mathbf{a}+\mathbf{b}, 2 \mathbf{a}+3 \mathbf{b},|\mathbf{a}|$, and $|\mathbf{a}-\mathbf{b}|$.

Solution. $\mathbf{a}+\mathbf{b}=5 \mathbf{i}-\mathbf{j}, 2 \mathbf{a}+3 \mathbf{b}=11 \mathbf{i}-4 \mathbf{j},|\mathbf{a}|=\sqrt{4^{2}+1^{2}}, \mathbf{a}-\mathbf{b}=3 \mathbf{i}+3 \mathbf{j}$, so $|\mathbf{a}-\mathbf{b}|=3 \sqrt{2}$.
1.2. Exercise 13.2.35. Find the unit vectors that are parallel to the tangent line to the parabola $y=x^{2}$ at the point $(2,4)$.

Solution. Tangent line has slope $y^{\prime}=2 x$ with $x=2$, so slope 4 . Take $\langle 1,4\rangle$ and normalise to get $\langle 1 / \sqrt{17}, 4 / \sqrt{17}\rangle$. We also get the negative of that.
1.3. Exercise 13.2.45. Use vectors to prove that the line joining the midpoints of two sides of a triangle is parallel to the third side and half its length.

Solution. Let $\overrightarrow{A B}=2 \mathbf{a}, \overrightarrow{B C}=2 \mathbf{b}$. Then the vector representing the midline is $\mathbf{a}+\mathbf{b}$ whereas the third side is $\overrightarrow{A C}=\overrightarrow{A B}+\overrightarrow{B C}=2(\mathbf{a}+\mathbf{b})$.

2. Dot Products

2.1. Basics. If $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\mathbf{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$ then the dot product is given by $\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$.

If θ is the angle between vectors \mathbf{a} and \mathbf{b} then $\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta$.
2.2. Exercise 13.3.7. Given $\mathbf{a}=\mathbf{i}-2 \mathbf{j}+3 \mathbf{k}, \mathbf{b}=5 \mathbf{i}+9 \mathbf{k}$. Find $\mathbf{a} \cdot \mathbf{b}$.

Solution. We have $\mathbf{a} \cdot \mathbf{b}=1 \cdot 5-2 \cdot 0+3 \cdot 9=32$.
2.3. Exercise 13.3.56. Suppose that all sides of a quadrilateral are equal in length and opposite sides are parallel. Use vector methods to show that the diagonals are perpendicular.

Solution. Let \mathbf{a} and \mathbf{b} represent two sides, then $|\mathbf{a}|=|\mathbf{b}|$. The two diagonals are $\mathbf{a}+\mathbf{b}$ and $\mathbf{a}-\mathbf{b}$. They are perpendicular if their dot product is zero. But $(\mathbf{a}+\mathbf{b}) \cdot(\mathbf{a}-\mathbf{b})=\mathbf{a} \cdot \mathbf{a}-\mathbf{b} \cdot \mathbf{b}=|\mathbf{a}|^{2}-|\mathbf{b}|^{2}=0$, as desired.
2.4. Exercise 13.3.60. Show that if $\mathbf{a}+\mathbf{b}$ and $\mathbf{a}-\mathbf{b}$ are orthogonal, then the vectors \mathbf{a} and \mathbf{b} must have the same length.

Solution. Notice $0=(\mathbf{a}+\mathbf{b}) \cdot(\mathbf{a}-\mathbf{b})=\mathbf{a} \cdot \mathbf{a}-\mathbf{b} \cdot \mathbf{b}=|\mathbf{a}|^{2}-|\mathbf{b}|^{2}=(|\mathbf{a}|+|\mathbf{b}|)(|\mathbf{a}|-$ $|\mathbf{b}|)$.

3. Cross Products

3.1. Basics. If $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\mathbf{b}=b_{1}, b_{2}, b_{3}$ then the cross product is given by the mnemonic

$$
\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right| .
$$

If θ is the angle between vectors \mathbf{a} and \mathbf{b} then $|\mathbf{a} \times \mathbf{b}|=|\mathbf{a}||\mathbf{b}| \sin \theta$, which is the area of the parallelogram determined by the vectors.
3.2. Exercise 13.4.18. If $\mathbf{a}=\langle 3,1,2\rangle, \mathbf{b}=\langle-1,1,0\rangle$, and $\mathbf{c}=\langle 0,0,-4\rangle$, show that $\mathbf{a} \times(\mathbf{b} \times \mathbf{c}) \neq(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$.

Solution. Notice that $\mathbf{a} \times \mathbf{b}=\langle-2,-2,4\rangle$, so $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}=\langle 8,-8,0\rangle$. But $\mathbf{b} \times \mathbf{c}=$ $\langle-4,-4,0\rangle$, so $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=\langle 8,-8,-8\rangle$.
3.3. Exercise 13.4.30. Let $P(2,1,5), Q(-1,3,4), R(3,0,6)$. Find a nonzero vector orthogonal to the plane through the points P, Q, and R, and find the area of triangle $P Q R$.
Solution. Notice $\overrightarrow{P Q}=\langle-3,2,-1\rangle$ and $\overrightarrow{P R}=\langle 1,-1,1\rangle$, so $\overrightarrow{P Q} \times \overrightarrow{P R}=\langle 1,2,1\rangle$. This vector works. And the area of triangle is $\frac{1}{2}|\langle 1,2,1\rangle|=\sqrt{6} / 2$.
3.4. Exercise 13.4.48. Prove that

$$
(\mathbf{a} \times \mathbf{b}) \cdot(\mathbf{c} \times \mathbf{d})=\left|\begin{array}{cc}
\mathbf{a} \cdot \mathbf{c} & \mathbf{b} \cdot \mathbf{c} \\
\mathbf{a} \cdot \mathbf{d} & \mathbf{b} \cdot \mathbf{d}
\end{array}\right| .
$$

Solution. Use $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$ and $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}$. Indeed, we get $(\mathbf{a} \times \mathbf{b}) \cdot(\mathbf{c} \times \mathbf{d})=\mathbf{a} \cdot(\mathbf{b} \times(\mathbf{c} \times \mathbf{d}))=\mathbf{a} \cdot((\mathbf{b} \cdot \mathbf{d}) \mathbf{c})-(\mathbf{b} \cdot \mathbf{c}) \mathbf{d})=(\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d})-(\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c})$, as desired.

