MATH 31A DISCUSSION

JED YANG

1. Theorems

1.1. Comparison Theorem. If $g(x) \leq f(x)$ on an interval [a, b], then

$$\int_{a}^{b} g(x) \, dx \le \int_{a}^{b} f(x) \, dx.$$

1.2. Fundamental Theorem of Calculus, I. Assume that f(x) is continuous on [a, b] and let F(x) be an antiderivative of f(x) on [a, b]. Then

$$\int_{a}^{b} f(x) \, dx = F(b) - F(a).$$

1.3. Fundamental Theorem of Calculus, II. Assume that f(x) is continuous on [a, b]. Let

$$A(x) = \int_{a}^{x} f(t) \, dt.$$

Then A is an antiderivative of f, that is, A'(x) = f(x), or equivalently

$$\frac{d}{dx}\int_{a}^{x}f(t)\,dt = f(x)$$

Furthermore, A(x) satisfies the initial condition A(a) = 0.

2. Fundamental Theorem of Calculus

2.1. Exercise 5.3.39. Write the integral $\int_0^{\pi} |\cos x| dx$ as a sum of integrals without absolute values and evaluate.

Solution. Notice that $\cos x$ is nonnegative on $[0, \pi/2]$ and nonpositive on $[\pi/2, \pi]$. As such, the integral in question is $\int_0^{\pi/2} \cos x \, dx + \int_{\pi/2}^{\pi/4} -\cos x \, dx = \sin x \mid_0^{\pi/2} -\sin x \mid_{\pi/2}^{\pi} = 1 - 0 - 0 + 1 = 2.$

2.2. **Exercise 5.3.52.** Apply the Comparison Theorem to the inequality $\sin x \le x$ (valid for $x \ge 0$) to prove $1 - \frac{x^2}{2} \le \cos x \le 1$. Apply it again to prove $x - \frac{x^3}{6} \le \sin x \le x$ (for $x \ge 0$).

Solution. On [0, t] for some t > 0, we have $\sin x \le x$. By the Comparison Theorem, we get $\int_0^t \sin x \, dx \le \int_0^t x \, dx$. This gives $-\cos t + 1 \le t^2/2$ hence $1 - \frac{t^2}{2} \le \cos t$. Since \cos is even, $\cos -t = \cos t$ satisfies the same inequality. Applying this again we get $\int_0^t 1 - \frac{x^2}{2} \, dx \le \int_0^t \cos x \, dx$, yielding $t - \frac{t^3}{3} \le \sin t$, as desired. \Box

2.3. Exercise 5.4.40. Find the smallest positive critical point of

$$F(x) = \int_0^x \cos(t^{3/2}) dt$$

and determine whether it is a local min or max.

Solution. As usual, to find critical point, we take derivative and set to 0. By FTC2, we get $F'(x) = \cos(x^{3/2})$. The smallest positive zero is when $x^{3/2} = \frac{\pi}{2}$. So $x = (\pi/2)^{2/3}$ is the smallest positive critical point. Since F' goes from positive to negative, it is a local max.