MATH 31A DISCUSSION

JED YANG

1. Theorems

1.1. Comparison Theorem. If $g(x) \leq f(x)$ on an interval [a, b], then

$$
\int_{a}^{b} g(x) d x \leq \int_{a}^{b} f(x) d x
$$

1.2. Fundamental Theorem of Calculus, I. Assume that $f(x)$ is continuous on $[a, b]$ and let $F(x)$ be an antiderivative of $f(x)$ on $[a, b]$. Then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

1.3. Fundamental Theorem of Calculus, II. Assume that $f(x)$ is continuous on $[a, b]$. Let

$$
A(x)=\int_{a}^{x} f(t) d t
$$

Then A is an antiderivative of f, that is, $A^{\prime}(x)=f(x)$, or equivalently

$$
\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

Furthermore, $A(x)$ satisfies the initial condition $A(a)=0$.

2. Fundamental Theorem of Calculus

2.1. Exercise 5.3.39. Write the integral $\int_{0}^{\pi}|\cos x| d x$ as a sum of integrals without absolute values and evaluate.

Solution. Notice that $\cos x$ is nonnegative on $[0, \pi / 2]$ and nonpositive on $[\pi / 2, \pi]$. As such, the integral in question is $\int_{0}^{\pi / 2} \cos x d x+\int_{\pi / 2}^{\pi / 4}-\cos x d x=\left.\sin x\right|_{0} ^{\pi / 2}$ $-\left.\sin x\right|_{\pi / 2} ^{\pi}=1-0-0+1=2$.
2.2. Exercise 5.3.52. Apply the Comparison Theorem to the inequality $\sin x \leq x$ (valid for $x \geq 0$) to prove $1-\frac{x^{2}}{2} \leq \cos x \leq 1$. Apply it again to prove $x-\frac{x^{3}}{6} \leq$ $\sin x \leq x($ for $x \geq 0)$.

Solution. On $[0, t]$ for some $t>0$, we have $\sin x \leq x$. By the Comparison Theorem, we get $\int_{0}^{t} \sin x d x \leq \int_{0}^{t} x d x$. This gives $-\cos t+1 \leq t^{2} / 2$ hence $1-\frac{t^{2}}{2} \leq \cos t$. Since \cos is even, $\cos -t=\cos t$ satisfies the same inequality. Applying this again we get $\int_{0}^{t} 1-\frac{x^{2}}{2} d x \leq \int_{0}^{t} \cos x d x$, yielding $t-\frac{t^{3}}{3} \leq \sin t$, as desired.
2.3. Exercise 5.4.40. Find the smallest positive critical point of

$$
F(x)=\int_{0}^{x} \cos \left(t^{3 / 2}\right) d t
$$

and determine whether it is a local min or max.
Solution. As usual, to find critical point, we take derivative and set to 0 . By FTC2, we get $F^{\prime}(x)=\cos \left(x^{3 / 2}\right)$. The smallest positive zero is when $x^{3 / 2}=\frac{\pi}{2}$. So $x=(\pi / 2)^{2 / 3}$ is the smallest positive critical point. Since F^{\prime} goes from positive to negative, it is a local max.

