MATH 31A DISCUSSION

JED YANG

1. Optimisation

1.1. Exercise 4.6.15. Find the dimensions of the rectangle of maximum area that can be inscribed in a circle of radius r.

Solution. Let x and y be the side lengths. By Pythagorean theorem, they satisfy $x^{2}+y^{2}=4 r^{2}$. We want to maximize $A=x y$. Solve for $y=\sqrt{4 r^{2}-x^{2}}$. So $A=x \sqrt{4 r^{2}-x^{2}}$. We can maximize $A^{2}=x^{2}\left(4 r^{2}-x^{2}\right)=4 r^{2} x^{2}-x^{4}$. Differentiate to get $\left(A^{2}\right)^{\prime}=8 r^{2} x-4 x^{3}$. Critical points are $8 r^{2} x-4 x^{3}=0$ so $x=0$ or $x^{2}=2 r^{2}$, that is, $x=r \sqrt{2}$. End points $x=0,2 r$. We get $A(0)=A(2 r)=0$ and $A(r \sqrt{2})=2 r^{2}$. So area is maximized when $x=y=r \sqrt{2}$, that is, we have a square.
1.2. Catching a bus. I am at one corner of a rectangular park with sides 60 and 300 metres. The bus stop is at the opposite corner. I can run on the grass at 5 m / s, and I can skateboard on the sidewalk (along the long side) at $13 \mathrm{~m} / \mathrm{s}$. I want to get to the bus stop by running across the park and then skateboarding on the sidewalk. Where should I run to in order to get there the fastest?
Solution. Let x be the distance that I skip on the long sidewalk. In otherwords, I run $\sqrt{60^{2}+x^{2}}$ on grass, and then run on sidewalk for $300-x$. Dividing by the rates, we get the total travel time is $y=\frac{300-x}{13}+\frac{\sqrt{60^{2}+x^{2}}}{5}$. Differentiating, we get $y^{\prime}=-\frac{1}{13}+\frac{x}{5 \sqrt{60^{2}+x^{2}}}$. Setting equal to 0 , we solve and get $x=25$.

Note that if there were a sidewalk on the short side too, then it would be faster to skate along the sidewalk for the entire time instead. Moral: Sometimes it is not good to cut corners.

2. Basic Integration

2.1. Exercise 4.8.58. Let $f^{\prime \prime}(t)=t-\cos t, f^{\prime}(0)=2, f(0)=-2$. Find f^{\prime} and f.

Solution. By integrating, we see $f^{\prime}(t)=t^{2} / 2-\sin t+c$. Since $f^{\prime}(0)=c=2$, we get $f^{\prime}(t)=t^{2} / 2-\sin t+2$. Integrating again to get $f(t)=t^{3} / 6+\cos t+2 t+d$. Since $f(0)=1+d=-2$, we get $d=-3$, yielding $f(t)=t^{3} / y+\cos t+2 t-3$.

