MATH 31A DISCUSSION

JED YANG

Applications of the Derivative

1. Related Rates

1.1. Exercise 3.9.44. A wheel of radius r is centred at the origin. As it rotates, the rod of length L attached at the point P drives a piston back and forth in a straight line. Let x be the distance from the origin to the point Q at the end of the rod.
(a) Use the Pythagorean Theorem to show that

$$
L^{2}=(x-r \cos \theta)^{2}+r^{2} \sin ^{2} \theta
$$

(b) Differentiate part (a) with resepct to t to prove that

$$
2(x-r \cos \theta)\left(\frac{d x}{d t}+r \sin \theta \frac{d \theta}{d t}\right)+2 r^{2} \sin \theta \cos \theta \frac{d \theta}{d t}=0
$$

(c) Calculate the speed of the piston when $\theta=\frac{\pi}{2}$, assuming that $r=10 \mathrm{~cm}$, $L=30 \mathrm{~cm}$, and the wheel rotates at 4 re volutions per minute.

Solution. Parts (a) and (b) are straightforward. 4 revolutions per minute means $\frac{d \theta}{d t}=4 \cdot 2 \pi$ per minute. From part (a), we get $30^{2}=x^{2}+10^{2}$, so $x=20 \sqrt{2}$. Plugging in, we get $2(20 \sqrt{2}-0)\left(\frac{d x}{d t}+10 \cdot 8 \pi\right)+0=0$. So $\frac{d x}{d t}=-80 \pi \mathrm{~cm}$ per minute.

2. Linear Approximations

2.1. Approximating Change. If f is differentiable at $x=a$ and Δx is small, then

$$
\Delta f \approx f^{\prime}(a) \Delta x
$$

where $\Delta f=f(a+\Delta x)-f(a)$.
2.2. Linearisation. If f is differentiable at $x=a$, and x is close to a, then

$$
f(x) \approx L(x)=f^{\prime}(a)(x-a)+f(a)
$$

3. Extrema

3.1. Basics.

3.1.1. Critical Points. A number c in the domain of f is called a critical point if either $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist.
3.1.2. Local Extrema. If $f(c)$ is a local extremum, then c is a critical point of f.
3.1.3. Extrema on Closed Interval. If $f(x)$ is continuous on $[a, b]$, and $f(c)$ be an extremum on $[a, b]$. Then c is either a critical point or one of the endpoints a or b.
3.1.4. Rolle's Theorem. Assume that $f(x)$ is continuous on $[a, b]$ and differentiable on (a, b). If $f(a)=f(b)$, then there exists a number c between a and b such that $f^{\prime}(c)=0$.
3.2. Exercise 4.2.39. Find the maximum and minimum values of $y=\sin x \cos x$ on $\left[0, \frac{\pi}{2}\right]$.
Solution. Notice $y^{\prime}=\cos ^{2} x-\sin ^{2} x=2 \cos ^{2} x-1$. If $y^{\prime}=0$, then $\cos ^{2} x=\frac{1}{2}$, so $\cos x= \pm \frac{\sqrt{2}}{2}$. In $\left[0, \frac{\pi}{2}\right]$, this occur at $x=\frac{\pi}{4}$. Now $f(0)=f\left(\frac{\pi}{2}\right)=0$, and $f\left(\frac{\pi}{4}\right)=\frac{1}{2}$. So min is 0 and max is $\frac{1}{2}$.
3.3. Exercise 4.2.73-74. Show that $f(x)=x^{2}-2 x+3$ takes on only positive values. Find conditions on r and s under which the quadratic function $f(x)=$ $x^{2}+r x+s$ takes on only positive values. Show that if f takes on both positive and negative values, then its minimum value occurs at the midpoint between the two roots.

Solution. For $f(x)=x^{2}-2 x+3$, we have $f^{\prime}(x)=2 x-2$, so $x=1$ is critical point, and $f(1)=2>0$. More generally, for $f(x)=x^{2}+r x+s$, we have $f^{\prime}(x)=2 x+r$, so $x=-\frac{r}{2}$ is critical point. Now $f\left(-\frac{r}{2}\right)=s-\frac{r^{2}}{4}$. So if we want this to be positive, we must have $s>\frac{r^{2}}{4}$. If f takes on both positive and negative values, then the roots are $x=\frac{-r \pm \sqrt{r^{2}-4 s}}{2}$, whose midpoint is $x=-\frac{r}{2}$, as desired.

