MATH 31A DISCUSSION

JED YANG

1. Theorems

1.1. Area Between Graphs. If $f(x) \ge g(x)$ on [a, b], then the area between the graphs is $\int_a^b f(x) - g(x) dx$.

1.2. Volume of a Solid. If the cross section of a solid between [a, b] has area A(x), then the volume is $\int_a^b A(x) dx$.

1.3. Solid of Revolution. If a solid of revolution is formed with radii r < R on [a, b], then the volume is $\pi \int_a^b (R^2 - r^2) dx$.

2. Applications of the Integral

2.1. Exercise 6.1.47. Set up (but do not evaluate) an integral that expresses the area between the circles $x^2 + y^2 = 2$ and $x^2 + (y - 1)^2 = 1$.

Solution. Solving $x^2 + y^2 = 2$ and $x^2 + (y-1)^2 = 1$, we get $2 - y^2 + y^2 - 2y + 1 = 1$, that is y = 1 and $x = \pm 1$. So the region is between x = -1 and x = 1, above $y = 1 - \sqrt{1 - x^2}$ and below $y = \sqrt{2 - x^2}$. Thus an integral representing the region is $\int_{-1}^{1} \sqrt{2 - x^2} - (1 - \sqrt{1 - x^2}) dx$. (The area is $\pi - 1$.)

2.2. Exercise 6.2.21. Let S be the solid obtained by intersecting two cylinders of radius r whose axes are perependicular. Find the volume of S as a function of r.

Solution. The horizontal cross section of each cylinder at distance y from the central axis is a rectangular strip. The strip's width w satisfies the Pythagorean relationship $(w/2)^2 + y^2 = r^2$, hence $w = 2\sqrt{r^2 - y^2}$.

The area of the horizontal cross section of S at distance y is thus $A = w^2 = 4(r^2 - y^2)$.

4(r'-y'). Finally, the volume of S is thus $V = \int_{-r}^{r} 4(r^2 - y^2) dy = 4 \left[r^2 y - y^3 / 3 \right]_{-r}^{r} = 8(r^3 - r^3 / 3) = \frac{16}{3}r^3.$

2.3. Exercise 6.3.36. Find volume of the solid obtained by rotating the region enclosed by the graphs $y = x^2$, y = 12 - x, and x = 0 about the axis y = 15.

Solution. Solving $x^2 = 12 - x$ gives x = 3 or -4. We'll take the $x \ge 0$ portion, since the $x \le 0$ portion intersects the axis and is weird. (N.B., this problem is not very clearly written.) The distances are $15 - x^2$ and 15 - 12 + x = 3 + x, respectively. Thus the volume is given by $V = \pi \int_0^3 (15 - x^2)^2 - (3 + x)^2 dx = \pi \left[x^5/5 - 31x^3/3 - 3x^2 + 216x \right]_0^3 = 1953\pi/5.$

2.4. Exercise 6.3.54. Verify the formula

$$\int_{x_1}^{x_2} (x - x_1)(x - x_2) \, dx = \frac{1}{6} (x_1 - x_2)^3$$

Then prove that the solid obtained by rotating the shaded region above y = mx + cand below $y^2 = ax + b$ about the x-axis has volume $V = \frac{\pi}{6}BH^2$, with B the base of the region and H the height.

Solution. The verification is a trivial process, and is left as an exercise to the student. Let x_1 and x_2 be the roots of $f(x) = ax + b - (mx + c)^2$, where $x_1 < x_2$. Notice that $V = \pi \int_{x_1}^{x_2} f(x) dx$. Since x_1 and x_2 are roots, and the coefficient of x^2 is $-m^2$, we get that $f(x) = -m^2(x - x_1)(x - x_2)$. Thus the integral becomes $V = \pi \int_{x_1}^{x_2} (-m^2)(x - x_1)(x - x_2) dx$. By the formula given, we get $V = -m^2 \pi \cdot \frac{1}{6}(x_1 - x_2)^3$. Notice that $x_2 - x_1 = B$ and $m = \frac{H}{B}$, we finally get $V = \frac{\pi}{6}BH^2$, as desired.