MATH 31A DISCUSSION

JED YANG

1. Theorems

1.1. Area Between Graphs. If $f(x) \geq g(x)$ on $[a, b]$, then the area between the graphs is $\int_{a}^{b} f(x)-g(x) d x$.
1.2. Volume of a Solid. If the cross section of a solid between $[a, b]$ has area $A(x)$, then the volume is $\int_{a}^{b} A(x) d x$.
1.3. Solid of Revolution. If a solid of revolution is formed with radii $r<R$ on $[a, b]$, then the volume is $\pi \int_{a}^{b}\left(R^{2}-r^{2}\right) d x$.

2. Applications of the Integral

2.1. Exercise 6.1.47. Set up (but do not evaluate) an integral that expresses the area between the circles $x^{2}+y^{2}=2$ and $x^{2}+(y-1)^{2}=1$.

Solution. Solving $x^{2}+y^{2}=2$ and $x^{2}+(y-1)^{2}=1$, we get $2-y^{2}+y^{2}-2 y+1=1$, that is $y=1$ and $x= \pm 1$. So the region is between $x=-1$ and $x=1$, above $y=1-\sqrt{1-x^{2}}$ and below $y=\sqrt{2-x^{2}}$. Thus an integral representing the region is $\int_{-1}^{1} \sqrt{2-x^{2}}-\left(1-\sqrt{1-x^{2}}\right) d x$. (The area is $\pi-1$.)
2.2. Exercise 6.2.21. Let S be the solid obtained by intersecting two cylinders of radius r whose axes are perependicular. Find the volume of S as a function of r.

Solution. The horizontal cross section of each cylinder at distance y from the central axis is a rectangular strip. The strip's width w satisfies the Pythagorean relationship $(w / 2)^{2}+y^{2}=r^{2}$, hence $w=2 \sqrt{r^{2}-y^{2}}$.

The area of the horizontal cross section of S at distance y is thus $A=w^{2}=$ $4\left(r^{2}-y^{2}\right)$.

Finally, the volume of S is thus $V=\int_{-r}^{r} 4\left(r^{2}-y^{2}\right) d y=4\left[r^{2} y-y^{3} / 3\right]_{-r}^{r}=$ $8\left(r^{3}-r^{3} / 3\right)=\frac{16}{3} r^{3}$.
2.3. Exercise 6.3.36. Find volume of the solid obtained by rotating the region enclosed by the graphs $y=x^{2}, y=12-x$, and $x=0$ about the axis $y=15$.

Solution. Solving $x^{2}=12-x$ gives $x=3$ or -4 . We'll take the $x \geq 0$ portion, since the $x \leq 0$ portion intersects the axis and is weird. (N.B., this problem is not very clearly written.) The distances are $15-x^{2}$ and $15-12+x=3+x$, respectively. Thus the volume is given by $V=\pi \int_{0}^{3}\left(15-x^{2}\right)^{2}-(3+x)^{2} d x=$ $\pi\left[x^{5} / 5-31 x^{3} / 3-3 x^{2}+216 x\right]_{0}^{3}=1953 \pi / 5$.
2.4. Exercise 6.3.54. Verify the formula

$$
\int_{x_{1}}^{x_{2}}\left(x-x_{1}\right)\left(x-x_{2}\right) d x=\frac{1}{6}\left(x_{1}-x_{2}\right)^{3} .
$$

Then prove that the solid obtained by rotating the shaded region above $y=m x+c$ and below $y^{2}=a x+b$ about the x-axis has volume $V=\frac{\pi}{6} B H^{2}$, with B the base of the region and H the height.

Solution. The verification is a trivial process, and is left as an exercise to the student. Let x_{1} and x_{2} be the roots of $f(x)=a x+b-(m x+c)^{2}$, where $x_{1}<x_{2}$. Notice that $V=\pi \int_{x_{1}}^{x_{2}} f(x) d x$. Since x_{1} and x_{2} are roots, and the coefficient of x^{2} is $-m^{2}$, we get that $f(x)=-m^{2}\left(x-x_{1}\right)\left(x-x_{2}\right)$. Thus the integral becomes $V=$ $\pi \int_{x_{1}}^{x_{2}}\left(-m^{2}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) d x$. By the formula given, we get $V=-m^{2} \pi \cdot \frac{1}{6}\left(x_{1}-x_{2}\right)^{3}$. Notice that $x_{2}-x_{1}=B$ and $m=\frac{H}{B}$, we finally get $V=\frac{\pi}{6} B H^{2}$, as desired.

