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1. Theorems

1.1. Fundamental Theorem of Calculus, II. Assume that f(x) is continuous
on [a, b]. Let

A(x) =

∫ x

a

f(t) dt.

Then A is an intiderivative of f , that is, A′(x) = f(x), or equivalently

d

dx

∫ x

a

f(t) dt = f(x).

Furthermore, A(x) satisfies the initial condition A(a) = 0.

1.2. The Substitution Method. If F ′(x) = f(x), then
∫

f(u(x))u′(x) dx = F (u(x)) + C.

2. More Topics in Integration

2.1. Exercise 5.4.40. Find the smallest positive critical point of

F (x) =

∫ x

0

cos(t3/2) dt

and determine whether it is a local min or max.

Solution. As usual, to find critical point, we take derivative and set to 0. By
FTC2, we get F ′(x) = cos(x3/2). The smallest positive zero is when x3/2 = π

2
. So

x = (π/2)2/3 is the smallest positive critical point. Since F ′ goes from positive to
negative, it is a local max. �

2.2. Exercise 5.6.50. Evaluate the indefinite integral
∫

cos
√

x
√

x
dx.

Solution. Let u =
√

x, then du = 1

2
√

x
dx. So

∫

cos
√

x√
x

dx =
∫

2 cosu du = 2 sinu +

C = 2 sin
√

x + C. �

2.3. Exercise 5.6.54. Can They Both Be Right? Use u = tanx and u = secx
to evaluate

∫

tanx sec2 xdx.

Show that these yield different answers and explain the apparent contradiction.
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Solution. If u = tanx then du = sec2 xdx, so the integral becomes
∫

u du = 1

2
u2 +

C = 1

2
tan2 x + C. On the other hand, if u = sec x then du = tanx secxdx,

so the integral becomes
∫

u du = 1

2
u2 + C = 1

2
sec2 x + C. Notice however that

sec2 x = tan2 x + 1. �

2.4. Exercise 5.6.72. Evaluate
∫ 2

0

r

√

5 −

√

4 − r2 dr.

Solution. Let u = 5 −

√

4 − r2, then du = r√
4−r2

dr = r
5−u dr. So the integral

becomes
∫ 5

3
(5 − u)

√

udu =
∫ 5

3
5u1/2

− u3/2 du = 10

3
u3/2

−
2

5
u5/2

∣

∣

5

3
= 20

√
5

3
−

32
√

3

5
.

�
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