MATH 31A DISCUSSION

JED YANG

1. Theorems

1.1. Comparison Theorem. If $g(x) \leq f(x)$ on an interval $[a, b]$, then

$$
\int_{a}^{b} g(x) d x \leq \int_{a}^{b} f(x) d x
$$

1.2. Fundamental Theorem of Calculus, I. Assume that $f(x)$ is continuous on $[a, b]$ and let $F(x)$ be an antiderivative of $f(x)$ on $[a, b]$. Then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a) .
$$

2. Topics in Integration

2.1. Exercise 5.2.80. Verify by interpreting the integral as an area:

$$
\int_{0}^{b} \sqrt{1-x^{2}} d x=\frac{1}{2} b \sqrt{1-b^{2}}+\frac{1}{2} \theta
$$

where $0 \leq b \leq 1$ and θ is the angle between 0 and $\frac{\pi}{2}$ such that $\sin \theta=b$.
Solution. The integral represents the area under the top half of the unit circle from 0 to b. We separate the area into two parts: a triangle with base b and height $\sqrt{1-b^{2}}$, yieling the term $\frac{1}{2} b \sqrt{1-b^{2}}$, and the circular sector of radius 1 and central angle θ, yielding the term $\frac{1}{2} \theta=\pi r^{2} \cdot \frac{\theta}{2 \pi}$.
2.2. Exercise 5.3.39. Write the integral $\int_{0}^{\pi}|\cos x| d x$ as a sum of integrals without absolute values and evaluate.

Solution. Notice that $\cos x$ is nonnegative on $[0, \pi / 2]$ and nonpositive on $[\pi / 2, \pi]$. As such, the integral in question is $\int_{0}^{\pi / 2} \cos x d x+\int_{\pi / 2}^{\pi / 4}-\cos x d x=\left.\sin x\right|_{0} ^{\pi / 2}$ $-\left.\sin x\right|_{\pi / 2} ^{\pi}=1-0-0+1=2$.
2.3. Exercise 5.3.52. Apply the Comparison Theorem to the inequality $\sin x \leq x$ (valid for $x \geq 0$) to prove $1-\frac{x^{2}}{2} \leq \cos x \leq 1$. Apply it again to prove $x-\frac{x^{3}}{6} \leq$ $\sin x \leq x($ for $x \geq 0)$.

Solution. On $[0, t]$ for some $t>0$, we have $\sin x \leq x$. By the Comparison Theorem, we get $\int_{0}^{t} \sin x d x \leq \int_{0}^{t} x d x$. This gives $-\cos t+1 \leq t^{2} / 2$ hence $1-\frac{t^{2}}{2} \leq \cos t$. Since \cos is even, $\cos -t=\cos t$ satisfies the same inequality. Applying this again we get $\int_{0}^{t} 1-\frac{x^{2}}{2} d x \leq \int_{0}^{t} \cos x d x$, yielding $t-\frac{t^{3}}{3} \leq \sin t$, as desired.

