MATH 31A DISCUSSION

JED YANG

1. More Applications of the Derivative

1.1. Recall.

1.1.1. Concavity. If $f^{\prime}(x)$ is increasing (or $f^{\prime \prime}(x)>0$), then f is concave up at x. If $f^{\prime}(x)$ is decreasing (or $f^{\prime \prime}(x)<0$), then f is concave down at x.
1.1.2. Inflection. If $f^{\prime \prime}(c)=0$ and $f^{\prime \prime}(x)$ changes sign at $x=c$, then $f(x)$ has a point of inflection at $x=c$.
1.1.3. Second Derivative Test. Let f be differentiable and c a critical point $\left(f^{\prime}(c)=\right.$ $0)$.
(a) If $f^{\prime \prime}(c)>0$ then $f(c)$ is a local minimum.
(b) If $f^{\prime \prime}(c)<0$ then $f(c)$ is a local maximum.
(c) If $f^{\prime \prime}(c)=0$ then it is inconclusive, $f(c)$ may be a local min, max, or neither.
1.2. Exercise 4.4.24. Find the critical points of $f(x)=\sin ^{2} x+\cos x, x$ in $[0, \pi]$, and use the Second Derivative Test to determine whether each corresponds to a local minimum or maximum.

Solution. Notice $f^{\prime}(x)=2 \sin x \cos x-\sin x$. Setting $f^{\prime}(x)=0$ and solving, we get $\sin x(2 \cos x-1)=0$, so $x=0, \pi / 3, \pi$. Now $f^{\prime \prime}(x)=2 \cos ^{2} x-2 \sin ^{2} x-\cos x$. So $f^{\prime \prime}(0)=1, f^{\prime \prime}\left(\frac{\pi}{3}\right)=-\frac{3}{2}, f^{\prime \prime}(\pi)=3$, yielding local minima at $x=0, \pi$ and maximum at $x=\pi / 3$.
1.3. Exercise 4.4.53. If $f^{\prime}(c)=0$ and $f(c)$ is neither a local min or max, must $x=c$ be a point of inflection? This is true of most "reasonable" examples, but it is not true in general. Let

$$
f(x)= \begin{cases}x^{2} \sin \frac{1}{x} & \text { for } x \neq 0 \\ 0 & \text { for } x=0\end{cases}
$$

- Use the limit definition of the derivative to show that $f^{\prime}(0)$ exists and $f^{\prime}(0)=0$.
- Show that $f(0)$ is neither a local min nor max.
- Show that $f^{\prime}(x)$ changes sign infinitely often near $x=0$ and conclude that $f(x)$ does not have a point of inflection at $x=0$.

Solution. Recall Exercise 3.7.92 from 10/20.
Recall $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$. So by definition, $f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}=$ $\lim _{h \rightarrow 0} h \sin \frac{1}{h}$. Using Squeeze Theorem and $-|h| \leq h \sin \frac{1}{h} \leq|h|$, we get that $f^{\prime}(0)=0$. Away from $x=0$, we can use the formula and get $f^{\prime}(x)=2 x \sin \frac{1}{x}+$ $x^{2} \cos \frac{1}{x} \cdot(-1) \frac{1}{x^{2}}=2 x \sin \frac{1}{x}-\cos \frac{1}{x}$. Now $\lim _{x \rightarrow 0} f^{\prime}(x)$ does not exist since $\lim _{x \rightarrow 0} 2 x \sin \frac{1}{x}=$ 0 by Squeeze Theorem but $\lim _{x \rightarrow 0} \cos \frac{1}{x}$ does not exist.

1.4. Exercise 4.5.59.

1.5. Exercise 4.5.68.

1.6. Bonus Question. Assume $f^{\prime \prime}(x)$ exists and $f^{\prime \prime}(x)>0$ for all x. Show that $f(x)$ cannot be always negative.

Solution. If $f^{\prime}(x) \equiv 0$, then $f^{\prime \prime}(x) \equiv 0$, a contradiction. So there exists b such that $f^{\prime}(b) \neq 0$. Consider the tangent line at $x=b$ to $f(x)$. It is given by the equation $y=f^{\prime}(b)(x-b)+f(b)$. Consider $g(x)=f(x)-f^{\prime}(b)(x-b)-f(b)$. Notice that $g^{\prime}(x)=f^{\prime}(x)-f^{\prime}(b)$ and $g^{\prime \prime}(x)=f^{\prime \prime}(x)$. So $g(b)=g^{\prime}(b)=0$, and $g^{\prime \prime}(x)>0$ for all x. Hence $g^{\prime}(x)$ is increasing. In particular, $g^{\prime}(x)<0$ for $x<b$ and $g^{\prime}(x)>0$ for $x>b$. If $x>b$, then by MVT, we get

$$
\frac{g(x)-g(b)}{x-b}=g^{\prime}(c)
$$

for some c in the interval (b, x). In otherwords, since $c>b$, we have that $g^{\prime}(c)>0$ nad $x-b>0$, hence $g(x)-g(b)>0$. Similarly, if $x<b$, we get $g^{\prime}(c)<0$, $x-b<0$, so $g(x)-g(b)>0$ as well. We thus conclude $g(x) \geq g(b)$ for all x. So $f(x) \geq f^{\prime}(b)(x-b)+f(b)$ for all x. Since $f^{\prime}(b) \neq 0$, there exists x far enough from the origin such that $f^{\prime}(b)(x-b)+f(b)>0$, as desired.

