MATH 31A DISCUSSION

JED YANG

1. Applications of the Derivative

1.1. Basics.

1.1.1. Critical Points. A number c in the domain of f is called a critical point if either $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist.
1.1.2. Local Extrema. If $f(c)$ is a local extremum, then c is a critical point of f.
1.1.3. Extrema on Closed Interval. If $f(x)$ is continuous on $[a, b]$, and $f(c)$ be an extremum on $[a, b]$. Then c is either a critical point or one of the endpoints a or b.
1.1.4. Rolle's Theorem. Assume that $f(x)$ is continuous on $[a, b]$ and differentiable on (a, b). If $f(a)=f(b)$, then there exists a number c between a and b such that $f^{\prime}(c)=0$.
1.1.5. Mean Value Theorem. Assume that f is continuous on $[a, b]$ and differentiable on (a, b). Then there exists a number $c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

In particular, if $f(a)=f(b)$, we get Rolle's Theorem.
1.2. Exercise 4.2.39. Find the maximum and minimum values of $y=\sin x \cos x$ on $\left[0, \frac{\pi}{2}\right]$.

Solution. Notice $y^{\prime}=\cos ^{2} x-\sin ^{2} x=2 \cos ^{2} x-1$. If $y^{\prime}=0$, then $\cos ^{2} x=\frac{1}{2}$, so $\cos x= \pm \frac{\sqrt{2}}{2}$. In $\left[0, \frac{\pi}{2}\right]$, this occur at $x=\frac{\pi}{4}$. Now $f(0)=f\left(\frac{\pi}{2}\right)=0$, and $f\left(\frac{\pi}{4}\right)=\frac{1}{2}$. So min is 0 and max is $\frac{1}{2}$.
1.3. Exercise 4.2.73-74. Show that $f(x)=x^{2}-2 x+3$ takes on only positive values. Find conditions on r and s under which the quadratic function $f(x)=$ $x^{2}+r x+s$ takes on only positive values. Show that if f takes on both positive and negative values, then its minimum value occurs at the midpoint between the two roots.

Solution. For $f(x)=x^{2}-2 x+3$, we have $f^{\prime}(x)=2 x-2$, so $x=1$ is critical point, and $f(1)=2>0$. More generally, for $f(x)=x^{2}+r x+s$, we have $f^{\prime}(x)=2 x+r$, so $x=-\frac{r}{2}$ is critical point. Now $f\left(-\frac{r}{2}\right)=s-\frac{r^{2}}{4}$. So if we want this to be positive, we must have $s>\frac{r^{2}}{4}$. If f takes on both positive and negative values, then the roots are $x=\frac{-r \pm \sqrt{r^{2}-4 s}}{2}$, whose midpoint is $x=-\frac{r}{2}$, as desired.
1.4. Exercise 4.3.42. Show that $f(x)=x^{3}-2 x^{2}+2 x$ is an increasing function.

Solution. Notice $f^{\prime}(x)=3 x^{2}-4 x+2$. What is its minimum? Find its critical points: $f^{\prime \prime}(x)=6 x-4$, so $x=\frac{2}{3}$ is the critical point. So $f^{\prime}(x)$ has its minimum at $x=\frac{2}{3}$, which is $f^{\prime}\left(\frac{2}{3}\right)=\frac{2}{3}$. So $f^{\prime}(x)>0$, thus $f(x)$ is increasing.
1.5. Exercise 4.3.53-55. Prove that if $f(0)=g(0)$ and $f^{\prime}(x) \leq g^{\prime}(x)$ for $x \geq 0$, then $f(x) \leq g(x)$ for all $x \geq 0$. Prove the following:
(a) $\sin x \leq x$ for $x \geq 0$.
(b) $\cos x \geq 1-\frac{1}{2} x^{2}$,
(c) $\sin x \geq x-\frac{1}{6} x^{3}$,
(d) $\cos x \leq 1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}$.

Solution. Let $h(x)=f(x)-g(x)$. Notice $h^{\prime}(x)=f^{\prime}(x)-g^{\prime}(x) \leq 0$. So $h(x)$ is nonincreasing. Since $h(0)=0$, we have that for $x \geq 0, h(0) \leq 0$. So $f(x)-g(x) \leq 0$, thus $f(x) \leq g(x)$, as desired.

Since $\sin x$ and x agree at $x=0$, and the derivatives $\cos x \leq 1$ as required, we apply what we got above to conclude the desired result. The rest follows similarly.

