MATH 31A DISCUSSION

JED YANG

1. Applications of the Derivative

1.1. Basics.

1.1.1. Critical Points. A number c in the domain of f is called a critical point if either f'(c) = 0 or f'(c) does not exist.

1.1.2. Local Extrema. If f(c) is a local extremum, then c is a critical point of f.

1.1.3. Extrema on Closed Interval. If f(x) is continuous on [a, b], and f(c) be an extremum on [a, b]. Then c is either a critical point or one of the endpoints a or b.

1.1.4. Rolle's Theorem. Assume that f(x) is continuous on [a, b] and differentiable on (a, b). If f(a) = f(b), then there exists a number c between a and b such that f'(c) = 0.

1.1.5. Mean Value Theorem. Assume that f is continuous on [a, b] and differentiable on (a, b). Then there exists a number $c \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

In particular, if f(a) = f(b), we get Rolle's Theorem.

1.2. Exercise 4.2.39. Find the maximum and minimum values of $y = \sin x \cos x$ on $[0, \frac{\pi}{2}]$.

Solution. Notice $y' = \cos^2 x - \sin^2 x = 2\cos^2 x - 1$. If y' = 0, then $\cos^2 x = \frac{1}{2}$, so $\cos x = \pm \frac{\sqrt{2}}{2}$. In $[0, \frac{\pi}{2}]$, this occur at $x = \frac{\pi}{4}$. Now $f(0) = f(\frac{\pi}{2}) = 0$, and $f(\frac{\pi}{4}) = \frac{1}{2}$. So min is 0 and max is $\frac{1}{2}$.

1.3. Exercise 4.2.73–74. Show that $f(x) = x^2 - 2x + 3$ takes on only positive values. Find conditions on r and s under which the quadratic function $f(x) = x^2 + rx + s$ takes on only positive values. Show that if f takes on both positive and negative values, then its minimum value occurs at the midpoint between the two roots.

Solution. For $f(x) = x^2 - 2x + 3$, we have f'(x) = 2x - 2, so x = 1 is critical point, and f(1) = 2 > 0. More generally, for $f(x) = x^2 + rx + s$, we have f'(x) = 2x + r, so $x = -\frac{r}{2}$ is critical point. Now $f(-\frac{r}{2}) = s - \frac{r^2}{4}$. So if we want this to be positive, we must have $s > \frac{r^2}{4}$. If f takes on both positive and negative values, then the roots are $x = \frac{-r \pm \sqrt{r^2 - 4s}}{2}$, whose midpoint is $x = -\frac{r}{2}$, as desired.

1.4. Exercise 4.3.42. Show that $f(x) = x^3 - 2x^2 + 2x$ is an increasing function.

Solution. Notice $f'(x) = 3x^2 - 4x + 2$. What is its minimum? Find its critical points: f''(x) = 6x - 4, so $x = \frac{2}{3}$ is the critical point. So f'(x) has its minimum at $x = \frac{2}{3}$, which is $f'(\frac{2}{3}) = \frac{2}{3}$. So f'(x) > 0, thus f(x) is increasing.

1.5. Exercise 4.3.53–55. Prove that if f(0) = g(0) and $f'(x) \le g'(x)$ for $x \ge 0$, then $f(x) \leq g(x)$ for all $x \geq 0$. Prove the following:

- (a) $\sin x \le x$ for $x \ge 0$.

- (a) $\sin x \ge x$ for $x \ge 0$. (b) $\cos x \ge 1 \frac{1}{2}x^2$, (c) $\sin x \ge x \frac{1}{6}x^3$, (d) $\cos x \le 1 \frac{1}{2}x^2 + \frac{1}{24}x^4$.

Solution. Let h(x) = f(x) - g(x). Notice $h'(x) = f'(x) - g'(x) \le 0$. So h(x) is nonincreasing. Since h(0) = 0, we have that for $x \ge 0$, $h(0) \le 0$. So $f(x) - g(x) \le 0$, thus $f(x) \leq g(x)$, as desired.

Since sin x and x agree at x = 0, and the derivatives $\cos x < 1$ as required, we apply what we got above to conclude the desired result. The rest follows similarly.