MATH 31A DISCUSSION

JED YANG

1. Differentiation

1.1. Basics. Given a function $f(x)$. The slope of the tangent line at $x=c$ is $f^{\prime}(c)$.
1.1.1. Higher Derivatives. Recursively define higher derivatives: $\left.f^{(n)}=\left(f^{(n-1}\right)\right)^{\prime}$.
1.1.2. Chain Rule. If f and g are differentiable, then $(f \circ g)(x)=f(g(x))$ is differentiable and $\left(f(g(x))^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)\right.$.
1.2. Exercise 3.6.51. Show that a nonzero polynomial function $y=f(x)$ cannot satisfy the equation $y^{\prime \prime}=-y$. Use this to prove that neither $\sin x$ nor $\cos x$ is a polynomial.

Proof. Let $y=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$, with $a_{n} \neq 0$. If the degree $n<2$, then $y^{\prime \prime} \equiv 0$ so $y^{\prime \prime} \neq-y$. Otherwise, $y^{\prime}=n a_{n} x^{n-1}+(n-1) a_{n-1} x^{n-2}+\ldots+2 a_{2} x+$ a_{1}, and $y^{\prime \prime}=(n-1) n a_{n} x^{n-2}+\ldots+2 a_{2}$. Since $y^{\prime \prime}$ lacks a monomial x^{n}, we cannot have $y^{\prime \prime}=-y$.
1.3. Exercise 3.7.92. A Discontinuous Derivative. Use the limit definition to show that $g^{\prime}(0)$ exists but $g^{\prime}(0) \neq \lim _{x \rightarrow 0} g^{\prime}(x)$, where

$$
g(x)= \begin{cases}x^{2} \sin \frac{1}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Proof. Recall $g^{\prime}(x)=\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}$. So by definition, $g^{\prime}(0)=\lim _{h \rightarrow 0} \frac{g(h)-g(0)}{h}=$ $\lim _{h \rightarrow 0} h \sin \frac{1}{h}$. Using Squeeze Theorem and $-|h| \leq h \sin \frac{1}{h} \leq|h|$, we get that $g^{\prime}(0)=0$. Away from $x=0$, we can use the formula and get $g^{\prime}(x)=2 x \sin \frac{1}{x}+$ $x^{2} \cos \frac{1}{x} \cdot(-1) \frac{1}{x^{2}}=2 x \sin \frac{1}{x}-\cos \frac{1}{x}$. Now $\lim _{x \rightarrow 0} g^{\prime}(x)$ does not exist since $\lim _{x \rightarrow 0} 2 x \sin \frac{1}{x}=$ 0 by Squeeze Theorem but $\lim _{x \rightarrow 0} \cos \frac{1}{x}$ does not exist.
1.4. Exercise 3.8.35. Implicit Differentiation. If the derivative $d x / d y$ exists at a point and $d x / d y=0$, then the tangent line is vertical. Calculate $d x / d y$ for the equation $y^{4}+1=y^{2}+x^{2}$ and find the points on the graph where the tangent line is vertical.

Solution. By implicit differentiation, we get $4 y^{3}=2 y+2 x \frac{d x}{d y}$. Setting $d x / d y=0$, we get $4 y^{3}=2 y$, so $y=0, \pm \frac{1}{\sqrt{2}}$. If $y=0$ then $x= \pm 1$, if $y= \pm \frac{1}{\sqrt{2}}$, then $x^{2}=\frac{3}{4}$, so we get 6 points.
1.5. Exercise 3.9.44. Related Rates. A wheel of radius r is centred at the origin. As it rotates, the rod of length L attached at the point P drives a piston back and forth in a straight line. Let x be the distance from the origin to the point Q at the end of the rod.
(a) Use the Pythagorean Theorem to show that

$$
L^{2}=(x-r \cos \theta)^{2}+r^{2} \sin ^{2} \theta
$$

(b) Differentiate part (a) with resepct to t to prove that

$$
2(x-r \cos \theta)\left(\frac{d x}{d t}+r \sin \theta \frac{d \theta}{d t}\right)+2 r^{2} \sin \theta \cos \theta \frac{d \theta}{d t}=0
$$

(c) Calculate the speed of the piston when $\theta=\frac{\pi}{2}$, assuming that $r=10 \mathrm{~cm}$, $L=30 \mathrm{~cm}$, and the wheel rotates at 4 revolutions per minute.

Solution. Parts (a) and (b) are straightforward. 4 revolutions per minute means $\frac{d \theta}{d t}=4 \cdot 2 \pi$ per minute. From part (a), we get $30^{2}=x^{2}+10^{2}$, so $x=20 \sqrt{2}$. Plugging in, we get $2(20 \sqrt{2}-0)\left(\frac{d x}{d t}+10 \cdot 8 \pi\right)+0=0$. So $\frac{d x}{d t}=-80 \pi \mathrm{~cm}$ per minute.
1.6. Exercise 3.8.55. Lemniscate Curve. The lemniscate curve $\left(x^{2}+y^{2}\right)^{2}=$ $4\left(x^{2}-y^{2}\right)$ was discovered by Jacob Bernoulli in 1694, who noted that it is "shaped like a figure 8 , or knot, or the bow of a ribbon." Find the coordinates of the four points at which the tangent line is horizontal.

Solution. By implicit differentiation and chain rule, we get $2\left(x^{2}+y^{2}\right)\left(2 x+2 y y^{\prime}\right)=$ $4\left(2 x-2 y y^{\prime}\right)$. If $y^{\prime}=0$, we get $2\left(x^{2}+y^{2}\right)(2 x)=4(2 x)$, yielding $x^{2}+y^{2}=2$. Substituting in to the lemniscate curve, we get $x^{2}-y^{2}=1$. So $x^{2}=3 / 2$ and $y^{2}=1 / 2$.

