MATH 31A DISCUSSION

JED YANG

1. Derivatives

1.1. Basics. Given a function $f(x)$. The slope of the tangent line at $x=c$ is $f^{\prime}(c)$.
1.1.1. Power Rule. For all exponents $n \in \mathbb{R}, \frac{d}{d x} x^{n}=n x^{n-1}$. Not for e^{x}, x^{x}.
1.1.2. Linearity Rules. If f and g are differentiable functions, $c \in \mathbb{R}$, then $c f$ and $f+g$ are differentiable. Indeed, $(f+g)^{\prime}=f^{\prime}+g^{\prime}$ and $(c f)^{\prime}=c f^{\prime}$.
1.1.3. Product and Quotient Rules. If f and g are differentiable, $(f g)^{\prime}=f g^{\prime}+g f^{\prime}$. And $(f / g)^{\prime}=\left(f^{\prime} g-g^{\prime} f\right) / g^{2}$.
1.2. Exercise 3.2.46. Sketch the graphs of $f(x)=x^{2}-5 x+4$ and $g(x)=-2 x+3$. Find the value of x at which the graphs have parallel tangent lines.

Solution. We need $f^{\prime}(x)=g^{\prime}(x)$. Notice $f^{\prime}(x)=2 x-5$ and $g^{\prime}(x)=-2$. So we solve $2 x-5=-2$ to get $x=\frac{3}{2}$.
1.3. Exercise 3.2.52. Show that if the tangent lines to the graph of $y=\frac{1}{3} x^{3}-x^{2}$ at $x=a$ and $x=b$ are parallel, then either $a=b$ or $a+b=2$.
Solution. We want $y^{\prime}(a)=y^{\prime}(b)$. Now $y^{\prime}=x^{2}-2 x$. So if $a^{2}-2 a=b^{2}-2 b$, then $\left(a^{2}-b^{2}\right)=2(a-b)$, giving $(a+b)(a-b)=2(a-b)$.
1.4. Exercise 3.3.55. Let $f(x)$ be a polynomial. Then c is a root of $f(x)$ if and only if $f(x)=(x-c) g(x)$ for some polynomial $g(x)$. We say that c is a multiple root if $f(x)=(x-c)^{2} h(x)$ for some polynomial $h(x)$.

Show that c is a multiple root of $f(x)$ if and only if c is a root of both $f(x)$ and $f^{\prime}(x)$.

Solution. Suppose c is a multiple root of $f(x)$. Then there exists some polynomial $h(x)$ such that $f(x)=(x-c)^{2} h(x)$. Obviously c is a root of $f(x)$. Using the Product Rule, we have $f^{\prime}(x)=2(x-c) h(x)+(x-c)^{2} h^{\prime}(x)$. So c is a root of $f^{\prime}(x)$ as well.

Conversely, suppose c is a root of both $f(x)$ and $f^{\prime}(x)$. Let $f(x)=(x-c)^{n} g(x)$ for the biggest $n \in \mathbb{Z}$ possible (equivalently, $g(c) \neq 0$). Since c is a root of f, we have $n \geq 1$. Suppose, towards a contradiction, that $n=1$. Then $f(x)=(x-c) g(x)$. By the Product Rule, we have $f^{\prime}(x)=g(x)+(x-c) g^{\prime}(x)$. So $f^{\prime}(c)=g(c) \neq 0$, a contradiction.
1.5. Exercise 3.3.56. Use Exercise 55 to determine whether $c=-1$ is a multiple root of the polynomial $f(x)=x^{4}+x^{3}-5 x^{2}-3 x+2$.

Solution. First check $f(-1)=0$, so -1 is a root of f. Now $f^{\prime}(x)=4 x^{3}+3 x^{2}-$ $10 x-3$. So $f^{\prime}(-1)=6 \neq 0$, so -1 is not a multiple root.
1.6. Exercise 3.4.32. It takes a stone 3 s to hit the ground when dropped from the top of a building. How high is the building and what is the stone's velocity upon impact.

Solution. The position is $s(t)=s_{0}+v_{0} t-\frac{1}{2} g t^{2}$, where s_{0} is the initial height, v_{0} is the initial velocity, and $g \approx 9.8 \mathrm{~m} / \mathrm{s}^{2}$. We have $v_{0}=0$, and $s(3)=0$. So we get $s(3)=s_{0}-\frac{1}{2} g(3)^{2}=0$. So the initial height is $4.5 g \approx 44.1 \mathrm{~m}$.

The velocity is $v(t)=v_{0}-g t$. So $v(3)=-3 g \approx-29.4 \mathrm{~m} / \mathrm{s}$.
1.7. Exercise 3.4.33. A ball is tossed up vertically from ground level and returns to earth 4 s later. What was the initial velocity of the stone and how high did it go?
Solution. We have $s_{0}=0, s(4)=0$, so we can solve for v_{0}. Indeed, $s(4)=$ $0+4 v_{0}-8 g=0$, so $v_{0}=2 g=19.6 \mathrm{~m} / \mathrm{s}$.

The maximum height occurs when the derivative is zero. So $s^{\prime}(t)=v(t)=$ $v_{0}-g t=0$ gives $t=v_{0} / g=2$. This confirms what we thought this is the half way point. The height is $s(2)=0+2 v_{0}-2 g=2 g=19.6 \mathrm{~m}$.

