MATH 31A DISCUSSION

JED YANG

1. Derivatives

1.1. **Basics.** Given a function f(x). The slope of the tangent line at x = c is f'(c).

1.1.1. Power Rule. For all exponents $n \in \mathbb{R}$, $\frac{d}{dx}x^n = nx^{n-1}$. Not for e^x , x^x .

1.1.2. Linearity Rules. If f and g are differentiable functions, $c \in \mathbb{R}$, then cf and f + g are differentiable. Indeed, (f + g)' = f' + g' and (cf)' = cf'.

1.1.3. Product and Quotient Rules. If f and g are differentiable, (fg)' = fg' + gf'. And $(f/g)' = (f'g - g'f)/g^2$.

1.2. Exercise 3.2.46. Sketch the graphs of $f(x) = x^2 - 5x + 4$ and g(x) = -2x + 3. Find the value of x at which the graphs have parallel tangent lines.

Solution. We need f'(x) = g'(x). Notice f'(x) = 2x - 5 and g'(x) = -2. So we solve 2x - 5 = -2 to get $x = \frac{3}{2}$.

1.3. Exercise 3.2.52. Show that if the tangent lines to the graph of $y = \frac{1}{3}x^3 - x^2$ at x = a and x = b are parallel, then either a = b or a + b = 2.

Solution. We want y'(a) = y'(b). Now $y' = x^2 - 2x$. So if $a^2 - 2a = b^2 - 2b$, then $(a^2 - b^2) = 2(a - b)$, giving (a + b)(a - b) = 2(a - b).

1.4. Exercise 3.3.55. Let f(x) be a polynomial. Then c is a root of f(x) if and only if f(x) = (x - c)g(x) for some polynomial g(x). We say that c is a multiple root if $f(x) = (x - c)^2h(x)$ for some polynomial h(x).

Show that c is a multiple root of f(x) if and only if c is a root of both f(x) and f'(x).

Solution. Suppose c is a multiple root of f(x). Then there exists some polynomial h(x) such that $f(x) = (x - c)^2 h(x)$. Obviously c is a root of f(x). Using the Product Rule, we have $f'(x) = 2(x - c)h(x) + (x - c)^2h'(x)$. So c is a root of f'(x) as well.

Conversely, suppose c is a root of both f(x) and f'(x). Let $f(x) = (x - c)^n g(x)$ for the biggest $n \in \mathbb{Z}$ possible (equivalently, $g(c) \neq 0$). Since c is a root of f, we have $n \geq 1$. Suppose, towards a contradiction, that n = 1. Then f(x) = (x - c)g(x). By the Product Rule, we have f'(x) = g(x) + (x - c)g'(x). So $f'(c) = g(c) \neq 0$, a contradiction.

1.5. Exercise 3.3.56. Use Exercise 55 to determine whether c = -1 is a multiple root of the polynomial $f(x) = x^4 + x^3 - 5x^2 - 3x + 2$.

Solution. First check f(-1) = 0, so -1 is a root of f. Now $f'(x) = 4x^3 + 3x^2 - 10x - 3$. So $f'(-1) = 6 \neq 0$, so -1 is not a multiple root.

1.6. Exercise 3.4.32. It takes a stone 3 s to hit the ground when dropped from the top of a building. How high is the building and what is the stone's velocity upon impact.

Solution. The position is $s(t) = s_0 + v_0 t - \frac{1}{2}gt^2$, where s_0 is the initial height, v_0 is the initial velocity, and $g \approx 9.8 \text{ m/s}^2$. We have $v_0 = 0$, and s(3) = 0. So we get $s(3) = s_0 - \frac{1}{2}g(3)^2 = 0$. So the initial height is $4.5g \approx 44.1$ m.

The velocity is $v(t) = v_0 - gt$. So $v(3) = -3g \approx -29.4$ m/s.

1.7. Exercise 3.4.33. A ball is tossed up vertically from ground level and returns to earth 4 s later. What was the initial velocity of the stone and how high did it go?

Solution. We have $s_0 = 0$, s(4) = 0, so we can solve for v_0 . Indeed, $s(4) = 0 + 4v_0 - 8g = 0$, so $v_0 = 2g = 19.6$ m/s.

The maximum height occurs when the derivative is zero. So $s'(t) = v(t) = v_0 - gt = 0$ gives $t = v_0/g = 2$. This confirms what we thought this is the half way point. The height is $s(2) = 0 + 2v_0 - 2g = 2g = 19.6$ m.