MATH 31A DISCUSSION

JED YANG

1. Basic Limits

1.1. **Basic Limit Laws.** Assume that $\lim_{x\to c} f(x)$ and $\lim_{x\to c} g(x)$ exist. Then: (a) Sum Law:

$$\lim_{x\to c} \left(f(x) + g(x)\right) = \lim_{x\to c} f(x) + \lim_{x\to c} g(x).$$

(b) Constant Multiple Law: For any number $k \in \mathbb{R}$,

$$\lim_{x \to c} kf(x) = k \lim_{x \to c} f(x)$$

(c) Product Law:

$$\lim_{x \to c} (f(x)g(x)) = \left(\lim_{x \to c} f(x)\right) \left(\lim_{x \to c} g(x)\right).$$

(d) Quotient Law: If $\lim_{x\to c} g(x) \neq 0$, then

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}$$

1.2. Exercise 2.3.22. Evaluate the limit $\lim_{z\to 1} \frac{z^{-1}+z}{z+1}$.

Solution. Recall that $\lim_{z\to 1} z = 1$ and $\lim_{z\to 1} 1 = 1$. By the Quotient Law, $\lim_{z\to 1} z^{-1} = \frac{\lim_{z\to 1} 1}{\lim_{z\to 1} z} = \frac{1}{1} = 1$. By the Sum Law, $\lim_{z\to 1} z^{-1} + z = \lim_{z\to 1} z^{-1} + \lim_{z\to 1} z = 1 + 1 = 2$. By the Sum Law, $\lim_{z\to 1} z + 1 = 2$. So by the Quotient Law, $\lim_{z\to 1} \frac{z^{-1} + z}{z+1} = \frac{\lim_{z\to 1} z^{-1} + z}{\lim_{z\to 1} z+1} = \frac{2}{2} = 1$.

1.3. Exercise 2.3.29. Can the Quotient Law be applied to evaluate $\lim_{x\to 0} \frac{\sin x}{x}$?

Solution. The Quotient Law requires the limit of the denominator, namely, $\lim_{x\to 0} x$, to exist and be nonzero. This is not the case, so we cannot apply directly. \Box

1.4. Exercise 2.3.30. Show that the Product Law cannot be used to evaluate $\lim_{x\to\pi/2}(x-\pi/2)\tan x$.

Solution. The Product Law requires the limit of each factor to exist. However, $\lim_{x\to\pi/2} \tan x$ does not exist.

1.5. Exercise 2.3.31. Give an example where $\lim_{x\to 0} (f(x) + g(x))$ exists but neither $\lim_{x\to 0} f(x)$ nor $\lim_{x\to 0} g(x)$ exists.

Solution. Let f(x) be any function defined on a neighborhood of 0 (but not necessarily at 0) such that $\lim_{x\to 0} f(x)$ does not exist (e.g., f(x) = 1/x). Let g(x) = -f(x). Then of course $\lim_{x\to 0} g(x)$ also does not exist (otherwise by the Constant Multiple Law, $\lim_{x\to 0} f(x)$ also exists). But notice f(x) + g(x) is identically zero in a neighborhood of 0 (but not necessarily at 0). So $\lim_{x\to 0} (f(x) + g(x)) = 0$ exists.

1.6. Exercise 2.3.32. Assume that the limit $L_a = \lim_{x\to 0} \frac{a^x - 1}{x}$ exists and that $\lim_{x\to 0} a^x = 1$ for all a > 0. Prove that $L_{ab} = L_a + L_b$ for a, b > 0. [Hint: $(ab)^x - 1 = a^x(b^x - 1) + (a^x - 1)$.]

Solution. By definition, $L_{ab} = \lim_{x\to 0} \frac{(ab)^x - 1}{x} = \lim_{x\to 0} a^x \frac{b^x - 1}{x} + \frac{a^x - 1}{x}$. Since $\lim_{x\to 0} a^x = 1$ by assumption and $\lim_{x\to 0} \frac{b^x - 1}{x} = L_b$ exists by assumption, the Product Law states $\lim_{x\to 0} a^x \frac{b^x - 1}{x} = 1 \cdot L_b$. Now $\lim_{x\to 0} \frac{a^x - 1}{x} = L_a$ by assumption, so the Sum Law yields $\lim_{x\to 0} a^x \frac{b^x - 1}{x} + \frac{a^x - 1}{x} = L_b + L_a$.

1.7. Exercise 2.3.38. Assuming that $\lim_{x\to 0} \frac{f(x)}{x} = 1$, which of the following statements is necessarily true?

- (a) f(0) = 0.
- (b) $\lim_{x \to 0} f(x) = 0.$

Solution. Remember that the value of f(x) at x = 0 never matters when we evaluate the limit $\lim_{x\to 0} f(x)$. So (a) is not (necessarily) true.

Recall that $\lim_{x\to 0} x = 0$, so by the Product Law, $\lim_{x\to 0} f(x) = \lim_{x\to 0} x \cdot \frac{f(x)}{x} = \lim_{x\to 0} x \cdot \lim_{x\to 0} \frac{f(x)}{x} = 0 \cdot 1 = 0$. Since $\lim_{x\to 0} \frac{f(x)}{x} = 1$, and $\lim_{x\to 0} x = 0$, we get $\lim_{x\to 0} f(x) = 0$.