MATH 31A DISCUSSION

JED YANG

1. Basic Limits

1.1. Basic Limit Laws. Assume that $\lim _{x \rightarrow c} f(x)$ and $\lim _{x \rightarrow c} g(x)$ exist. Then:
(a) Sum Law:

$$
\lim _{x \rightarrow c}(f(x)+g(x))=\lim _{x \rightarrow c} f(x)+\lim _{x \rightarrow c} g(x)
$$

(b) Constant Multiple Law: For any number $k \in \mathbb{R}$,

$$
\lim _{x \rightarrow c} k f(x)=k \lim _{x \rightarrow c} f(x)
$$

(c) Product Law:

$$
\lim _{x \rightarrow c}(f(x) g(x))=\left(\lim _{x \rightarrow c} f(x)\right)\left(\lim _{x \rightarrow c} g(x)\right)
$$

(d) Quotient Law: If $\lim _{x \rightarrow c} g(x) \neq 0$, then

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow c} f(x)}{\lim _{x \rightarrow c} g(x)}
$$

1.2. Exercise 2.3.22. Evaluate the $\operatorname{limit}^{\lim } \lim _{z \rightarrow 1} \frac{z^{-1}+z}{z+1}$.

Solution. Recall that $\lim _{z \rightarrow 1} z=1$ and $\lim _{z \rightarrow 1} 1=1$. By the Quotient Law, $\lim _{z \rightarrow 1} z^{-1}=\frac{\lim _{z \rightarrow 1} 1}{\lim _{z \rightarrow 1} z}=\frac{1}{1}=1$. By the Sum Law, $\lim _{z \rightarrow 1} z^{-1}+z=\lim _{z \rightarrow 1} z^{-1}+$ $\lim _{z \rightarrow 1} z=1+1=2$. By the Sum Law, $\lim _{z \rightarrow 1} z+1=2$. So by the Quotient Law, $\lim _{z \rightarrow 1} \frac{z^{-1}+z}{z+1}=\frac{\lim _{z \rightarrow 1} z^{-1}+z}{\lim _{z \rightarrow 1} z+1}=\frac{2}{2}=1$.
1.3. Exercise 2.3.29. Can the Quotient Law be applied to evaluate $\lim _{x \rightarrow 0} \frac{\sin x}{x}$?

Solution. The Quotient Law requires the limit of the denominator, namely, $\lim _{x \rightarrow 0} x$, to exist and be nonzero. This is not the case, so we cannot apply directly.
1.4. Exercise 2.3.30. Show that the Product Law cannot be used to evaluate $\lim _{x \rightarrow \pi / 2}(x-\pi / 2) \tan x$.
Solution. The Product Law requires the limit of each factor to exist. However, $\lim _{x \rightarrow \pi / 2} \tan x$ does not exist.
1.5. Exercise 2.3.31. Give an example where $\lim _{x \rightarrow 0}(f(x)+g(x))$ exists but neither $\lim _{x \rightarrow 0} f(x)$ nor $\lim _{x \rightarrow 0} g(x)$ exists.
Solution. Let $f(x)$ be any function defined on a neighborhood of 0 (but not necessarily at 0) such that $\lim _{x \rightarrow 0} f(x)$ does not exist (e.g., $\left.f(x)=1 / x\right)$. Let $g(x)=$ $-f(x)$. Then of course $\lim _{x \rightarrow 0} g(x)$ also does not exist (otherwise by the Constant Multiple Law, $\lim _{x \rightarrow 0} f(x)$ also exists). But notice $f(x)+g(x)$ is identicaly zero in a neighborhood of 0 (but not necessarily at 0). So $\lim _{x \rightarrow 0}(f(x)+g(x))=0$ exists.
1.6. Exercise 2.3.32. Assume that the limit $L_{a}=\lim _{x \rightarrow 0} \frac{a^{x}-1}{x}$ exists and that $\lim _{x \rightarrow 0} a^{x}=1$ for all $a>0$. Prove that $L_{a b}=L_{a}+L_{b}$ for $a, b>0$. [Hint: $\left.(a b)^{x}-1=a^{x}\left(b^{x}-1\right)+\left(a^{x}-1\right).\right]$
Solution. By definition, $L_{a b}=\lim _{x \rightarrow 0} \frac{(a b)^{x}-1}{x}=\lim _{x \rightarrow 0} a^{x} \frac{b^{x}-1}{x}+\frac{a^{x}-1}{x}$. Since $\lim _{x \rightarrow 0} a^{x}=1$ by assumption and $\lim _{x \rightarrow 0} \frac{b^{x}-1}{x}=L_{b}$ exists by assumption, the Product Law states $\lim _{x \rightarrow 0} a^{x} \frac{b^{x}-1}{x}=1 \cdot L_{b}$. Now $\lim _{x \rightarrow 0} \frac{a^{x}-1}{x}=L_{a}$ by assumption, so the Sum Law yields $\lim _{x \rightarrow 0} a^{x} \frac{b^{x}-1}{x}+\frac{a^{x}-1}{x}=L_{b}+L_{a}$.
1.7. Exercise 2.3.38. Assuming that $\lim _{x \rightarrow 0} \frac{f(x)}{x}=1$, which of the following statements is necessarily true?
(a) $f(0)=0$.
(b) $\lim _{x \rightarrow 0} f(x)=0$.

Solution. Remember that the value of $f(x)$ at $x=0$ never matters when we evaluate the limit $\lim _{x \rightarrow 0} f(x)$. So (a) is not (necessarily) true.

Recall that $\lim _{x \rightarrow 0} x=0$, so by the Product Law, $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} x \cdot \frac{f(x)}{x}=$ $\lim _{x \rightarrow 0} x \cdot \lim _{x \rightarrow 0} \frac{f(x)}{x}=0 \cdot 1=0$. Since $\lim _{x \rightarrow 0} \frac{f(x)}{x}=1$, and $\lim _{x \rightarrow 0} x=0$, we get $\lim _{x \rightarrow 0} f(x)=0$.

