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MATH 31A DISCUSSION

JED YANG

1. Introduction

Lecture 1

• Instructor: Calin Martin.
• Location: MOORE 100.

Sections 1E and 1F

• Email: mailto:jedyang@ucla.edu.
• Office: MS 6617A.
• Office hours: T 12:30–13:30 xor W 15:00–16:00.
• Discussion Location: DODD 78.
• Website: http://www.math.ucla.edu/∼jedyang/31a.1.09f/.
• SMC: Sept. 30–Dec. 3, M–R 09:00–15:00, MS 3974, M 13:00–14:00.

2. Administration

• HW due Fridays in lecture, and I will hand back in section.
• Textbook: Rogawski, Single Variable Calculus, 2008.
• Determine office hour.

3. Precalculus Review

3.1. Exercise 1.2.21. Find the equation of the perpendicular bisector of the seg-
ment joining (1, 2) and (5, 4).

Solution. Slope of segment is m1 = 4−2
5−1 = 1

2 . Slope of perpendicular bisector is

m2 = −1/m1 = −2. Mid point is (1+5
2 , 2+4

2 ). So the equation can be written as
y − 3 = −2(x − 3). �

3.2. Exercise 1.2.23. Find the equation of the line with x-intercept x = 4 and
y-intercept y = 3.

Solution. Equation of the line is y = mx+b, where b is the y-intercept, hence b = 3.
The x-intercept x = 4 will yield y = 0 (by definition), so substituting, we may solve
for m. We get 0 = 4m + 3, hence m = − 3

4 . So the equation can be written as

y = − 3
4x + 3. �

3.3. Exercise 1.2.24. A line of slope m = 2 passes through (1, 4). Find y such
that (3, y) lies on the line.
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Solution. One way is to write down an equation of the line in point-slope form:
y = 2(x − 1) + 4. Then we see clearly that if x = 3, then y = 8. Alternatively,

the slope m is the change of y over the change of x. Symbolically, m = ∆y
∆x , or

∆y = m∆x. This concept will be useful later when we deal with differentials
dy = m dx. Since the change in x is ∆x = 3− 1 = 2, we get that the change in y is
∆y = y − 4 = 2 · 2 = 4, hence y = 8. This method seems longer, but conceptually
it is easier to do in one’s head, and will lead to intution for calculus later. �

3.4. Exercise 1.4.55. Use the addition formulae for sine and cosine to prove

tan(a + b) =
tan a + tan b

1 − tana tan b
(1)

cot(a − b) =
cota cot b + 1

cot b − cot a
. (2)

Proof. Recall that

sin(a + b) = sina cos b + cos a sin b (3)

cos(a + b) = cos a cos b − sin a sin b. (4)

Now

tan(a + b) =
sin(a + b)

cos(a + b)
(5)

=
sin a cos b + cos a sin b

cos a cos b − sin a sin b
(6)

=
sin a
cos a + sin b

cos b

1 − sin a
cos a

sin b
cos b

(7)

=
tan a + tan b

1 − tan a tan b
, (8)

where we get from (6) to (7) by dividing top and bottom by cosa cos b.
The case for cotangent is completely analogous. Remember cotx = cos x

sin x and
that sin(−b) = − sin(b) and cos(−b) = cos(b). Work out the details and convince
yourself. �

3.5. Exercise 1.4.56. Let θ be the angle between the line y = mx + b and the
x-axis. Prove that m = tan θ.

Proof. This is trivial. �

3.6. Exercise 1.4.57. Let L1 and L2 be the lines of slope m1 and m2, respectively.
Show that the angle θ between L1 and L2 satisfies cot θ = m2m1+1

m2−m1
.

Proof. This is immediate by using Exercises 55 and 56. �

3.7. Exercise 1.4.58. Perpendicular Lines. Use Exercise 57 to prove that two
lines with nonzero slopes m1 and m2 are perpendicular if and only if m2 = −1/m1.

Proof. What is cot(π/2)? �
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3.8. Exercise 1.4.59. Apply the double-angle formula to prove:

(a) cos π
8 = 1

2

√

2 +
√

2.

(b) cos π
16 = 1

2

√

2 +
√

2 +
√

2.

Guess the values of cos π
32 and of cos π

2n
for all n.

Proof. Recall cos2 t = 1+cos(2t)
2 . For the general case, let a0 = 0 and define in-

ductively an =
√

2 + an−1. We claim that for n ≥ 1, we have cos π
2n

= 1
2an−1.

The base case is trivial. By induction, assume cos π
2n

= 1
2an−1. By the half-angle

formula, we get cos π
2n+1 =

√

1
2 (1 + 1

2an−1) =
√

1
4 (2 + an−1) = 1

2an. �

4. Basic Limits

4.1. Basic Limit Laws. Assume that limx→c f(x) and limx→c g(x) exist. Then:

(a) Sum Law:

lim
x→c

(f(x) + g(x)) = lim
x→c

f(x) + lim
x→c

g(x).

(b) Constant Multiple Law: For any number k ∈ R,

lim
x→c

kf(x) = k lim
x→c

f(x).

(c) Product Law:

lim
x→c

(f(x)g(x)) =
(

lim
x→c

f(x)
) (

lim
x→c

g(x)
)

.

(d) Quotient Law: If limx→c g(x) 6= 0, then

lim
x→c

f(x)

g(x)
=

limx→c f(x)

limx→c g(x)
.

4.2. Exercise 2.3.22. Evaluate the limit limz→1
z−1+z

z+1 .

Solution. Recall that limz→1 z = 1 and limz→1 1 = 1. By the Quotient Law,
limz→1 z−1 = limz→1 1

limz→1 z = 1
1 = 1. By the Sum Law, limz→1 z−1 + z = limz→1 z−1 +

limz→1 z = 1+1 = 2. By the Sum Law, limz→1 z +1 = 2. So by the Quotient Law,

limz→1
z−1+z

z+1 = limz→1 z−1+z
limz→1 z+1 = 2

2 = 1. �

4.3. Exercise 2.3.29. Can the Quotient Law be applied to evaluate limx→0
sin x

x ?

Solution. The Quotient Law requires the limit of the denominator, namely, limx→0 x,
to exist and be nonzero. This is not the case, so we cannot apply directly. �

4.4. Exercise 2.3.30. Show that the Product Law cannot be used to evaluate
limx→π/2(x − π/2) tanx.

Solution. The Product Law requires the limit of each factor to exist. However,
limx→π/2 tan x does not exist. �

4.5. Exercise 2.3.31. Give an example where limx→0 (f(x) + g(x)) exists but nei-
ther limx→0 f(x) nor limx→0 g(x) exists.
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Solution. Let f(x) be any function defined on a neighborhood of 0 (but not nec-
essarily at 0) such that limx→0 f(x) does not exist (e.g., f(x) = 1/x). Let g(x) =
−f(x). Then of course limx→0 g(x) also does not exist (otherwise by the Constant
Multiple Law, limx→0 f(x) also exists). But notice f(x) + g(x) is identicaly zero
in a neighborhood of 0 (but not necessarily at 0). So limx→0 (f(x) + g(x)) = 0
exists. �

4.6. Exercise 2.3.32. Assume that the limit La = limx→0
ax

−1
x exists and that

limx→0 ax = 1 for all a > 0. Prove that Lab = La + Lb for a, b > 0. [Hint:
(ab)x − 1 = ax(bx − 1) + (ax − 1).]

Solution. By definition, Lab = limx→0
(ab)x

−1
x = limx→0 ax bx

−1
x + ax

−1
x . Since

limx→0 ax = 1 by assumption and limx→0
bx

−1
x = Lb exists by assumption, the

Product Law states limx→0 ax bx

−1
x = 1 ·Lb. Now limx→0

ax

−1
x = La by assumption,

so the Sum Law yields limx→0 ax bx

−1
x + ax

−1
x = Lb + La. �

4.7. Exercise 2.3.38. Assuming that limx→0
f(x)

x = 1, which of the following
statements is necessarily true?

(a) f(0) = 0.
(b) limx→0 f(x) = 0.

Solution. Remember that the value of f(x) at x = 0 never matters when we evaluate
the limit limx→0 f(x). So (a) is not (necessarily) true.

Recall that limx→0 x = 0, so by the Product Law, limx→0 f(x) = limx→0 x· f(x)
x =

limx→0 x · limx→0
f(x)

x = 0 · 1 = 0. Since limx→0
f(x)

x = 1, and limx→0 x = 0, we get
limx→0 f(x) = 0. �
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