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Q1. Does the series Y % converge or diverge? Does it converge absolutely? Prove your claims.
[Recall that n!l =n(n—1)(n—2)-...-3-2-1.]

Solution. Let s, = . Note that for sufficiently large n, n! > n(n—1)(n—2)(n—3)(n—4)(n—>5) > (n—5)°,

50 —& < =57 By comparison test, the series > s, converges, so > (—1)"s, converges absolutely, and

hence converges. O

Q2. Prove that the inequality
2= Iyl | < | - gl

holds for all real numbers z,y € R.

Solution. We need to show that — |z — y| < |z| — |y| < |z —y|. By the Triangle Inequality, we have|z| =
|z —y+y| <|z—y|l+ |y, yielding the second inequality |z| — |y| < |x — y|. By symmetry, exchanging the
role of z and y, we get |y| — |z| < |x — y|, which gives the first inequality. a

Q3. Suppose (s,,) is a convergent sequence such that lim s, < 23. Prove that eventually s, < 23; i.e., there
exists a number N such that n > N implies s, < 23.

Solution. Let s = lims,. Let ¢ = 23 —s. As s < 23, ¢ > 0. Therefore by definition, there exists N such
that n > N implies |s,, — s| < e. But then s,, < s+ & = 23, as desired. O

Q4. Suppose A, B C R are bounded nonempty subsets. Let C = {a—b:a € A, b € B} be the set containing
the difference a — b for each a € A and b € B. Calculate inf C' in terms of inf A, inf B, sup A, and sup B.
Prove your claim.

Solution. Let o = inf A and § = sup B. We prove that inf C =« — .

Recall that inf C' is the greatest lower bound of elements in C'. As « is a lower bound of A, we have a < a
for all a € A. Also, as ( is an upper bound of B, we get b < 3 for all b € B, and thus — 3 < —b for all b € B,
giving that « — 3 < a —b for all a € A and b € B. This establishes that « — § is a lower bound of C, i.e.,
a— 0 <inf C.

Now we show that a— (3 is the greatest lower bound. Let € > 0. It suffices to show that o — 3+ ¢ is not a
lower bound of C. Indeed, consider a+¢/2 and §—¢/2. Since o = inf A is the greatest lower bound, a+¢/2
is not a lower bound of A, and thus there exists a € A such that a < o+ ¢/2. Similarly, as § = sup B is the
least upper bound, 3 — &/2 is not an upper bound of B, and thus there exists b € B such that b > § — /2.
Adding the two inequalities, we get a — b < a — 3 + £. This means that a — b € C' is a number smaller than
« — (B + ¢, which is therefore not a lower bound. a

Q5. Let (s,) be a sequence of nonnegative numbers. Prove that _ s converges for all p > 1 if and only if
it converges for p = 1.

Solution. The forward direction is obvious. Let us prove that if > s,, converges, then so does > sP for p > 1.
Suppose > s, is a convergent series, then lim s,, = 0. Therefore there exists N € N such that n > N implies
$n, < 1, which in turn gives s£ < s,,. By comparison, Y sP converges.

Note that even though s? < s, only for n > NN, the comparison test still works. Indeed, the intial segment
of a series does not change the convergence behaviour. If one wants to be careful, one may use comparison
to conclude that ) . \ sh converges, and then state that > sh =y sh + > oy sh, which is finite as
both sums are. (]

Q6. Let (a,) be a sequence such that liminf |a,| = 0. Prove that it has a subsequence (b,,) such that both
limb,, and > b, converge.
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Solution. As
liminf |a,| = lilgninf{|an| :n >k} =0,

for any € > 0, there exists N such that inf{|a,|:n > N} <e.

We construct a sequence (ny) by induction. Consider the statement P, which states that ther exists
natural numbers ng < n; < ... < ng such that |a,,| < 27%. Obviously P, is true. Suppose that Pj is
true. By definition, there exists ng 1 > ny such that inf{|a,| : n > npy1} < 27*+FD. In particular,
|ank+1| < 27+ Therefore Py holds and we finish the inductive construction of (ny).

Since |a,,| < 27%, and Y.27% = 1 is a convergent (geometric) series, _ |a,,| converges by compari-
son. This means Y ay,, is absolutely convergent and thus is convergent. Furthermore, that implies lim a,,
converges (to 0). O
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