Math131A Set 4

Due at the lecture on Monday, July 22, 2013.
Collaboration is encouraged, as long as you write your own solutions and write down the name of your collaborators.

17. Continuous functions

17.1. Let $f(x)=x+23$ and $g(x)=\sqrt{x}, x \geq 0$.
(a) Find the domain of $f+g, f g, f \circ g$ and $g \circ f$.
(b) Prove that $f \circ g \neq g \circ f$.
(c) Show that $\sqrt{x+23}$ is continuous on its domain.
17.2. A function f is called a rational function if it can be written as the quotient $f=p / q$ of polynomial functions p and q, i.e., p is of the form $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$ and similarly for q. Prove that rational functions are continuous. [Hint: Prove that polynomials are continuous first.]
17.3. Prove the following functions are continuous or discontinuous at $x=a$ by using either the definition or Theorem 17.2 (the $\varepsilon-\delta$ definition).
(a) $f(x)=1 / x^{2}, a=7$.
(b) $f(x)=x^{3}$, any $a \in \mathbb{R}$.
(c) $f(x)=\cos \left(\frac{1}{x}\right)$ for $x \neq 0, f(0)=0, a=0$.
(d) $f(x)=x \cos \left(\frac{1}{x}\right)$ for $x \neq 0, f(0)=0, a=0$.
17.4. For $x \in \mathbb{Q}$ a rational number, write x in its reduced form: $x=p / q, p, q \in \mathbb{Z}, \operatorname{gcd}(p, q)=1$, and $q>0$. Define $f(x)=1 / q$ for each rational number $x \in \mathbb{Q}$. Otherwise, define $f(x)=0$ for $x \in \mathbb{R} \backslash \mathbb{Q}$. Show that $f(x)$ is continuous at all irrational points $x \in \mathbb{R} \backslash \mathbb{Q}$ and discontinuous at all rational points $x \in \mathbb{Q}$.

18. Properties of continuous functions

Do exercises 18.4, 18.5, and 18.9 in Ross.

19. UnIFORM CONTINUITY

Do exercises 19.6, 19.7, and 19.9 in Ross.

