Math131A Set 1

Due at the lecture on Monday, July 1, 2013.
Collaboration is encouraged, as long as you write your own solutions and write down the name of your collaborators.

1. Natural Numbers \mathbb{N}

1.1. Prove

$$
23+29+35+\ldots+(6 n-1)=3 n^{2}+2 n-33
$$

for all natural numbers $n \in \mathbb{N}$. [You may start with $n \geq 4$.]
1.2.
(a) Decide for which natural numbers $n \in \mathbb{N}$ the inequality $3^{n}>n^{3}$ is true.
(b) Prove that your claim is correct by mathematical induction.
1.3. Commutativity of addition. Using the Peano axioms, prove that

$$
m+n=n+m \text { for all } n, m \in \mathbb{N}
$$

For $n \in \mathbb{N}$, let P_{n} be the statement $m+n=n+m$ for all $m \in \mathbb{N}$.
(a) Prove that P_{0} is true using mathematical induction on m, i.e., prove that $m+0=0+m$ for all m.
(b) (Optional) Prove that P_{1} is true.
(c) Prove that if P_{n} is true, then so is P_{n+1}.
[You may assume the associativity of addition: $(a+b)+c=a+(b+c)$ for $a, b, c \in \mathbb{N}$.]
2. Rational Numbers \mathbb{Q}
2.1. Prove that the following are not rational numbers:
(a) $\alpha=\sqrt{2}-\sqrt{3}$
(b) $\varphi=\frac{1+\sqrt{5}}{2}$

3. Ordered Fields

Let $(F, 0,1,+, \cdot, \leq)$ be an ordered field.
3.1. Addition of inequalities. Suppose $a \leq b, c \leq d$ in F. Prove that $a+c \leq b+d$.
3.2. Generalized triangle inequality. Prove that

$$
\left|a_{1}+a_{2}+\ldots+a_{n}\right| \leq\left|a_{1}\right|+\left|a_{2}\right|+\ldots+\left|a_{n}\right|
$$

for n elements $a_{1}, a_{2}, \ldots, a_{n} \in F$.

4. Real Numbers \mathbb{R}

Do parts (b), (k), and (v) of exercises 4.1, 4.3, and 4.4 in the book. [For (k), start with $n=1$.]
Do exercises 4.7 and 4.8 in the book.

