
CS 202 October 21, 2016

CS 202 Recursive Algorithms

Merge Sort

Merge Sort is a classic sorting algorithm which you probably studied in CS 111. We can sort a list by
recursively sorting the first half, recursively sorting the second half, and merging the resulting sorted list,

1 mergeSort(A[1 ... n]):

2 // Input: an array A

3 // Ouptut: A in sorted order

4

5 if n == 1:

6 return A

7 else:

8 L = mergeSort(A[1 ... n/2])

9 R = mergeSort(A[n/2+1 ... n])

10 return merge(L,R)

which is done by repeatedly removing the smallest element from the beginning of the two sorted lists.

1 merge(X[1 ... m], Y[1 ... n]):

2 // Input: two sorted arrays X and Y

3 // Output: a single sorted array of all elements in X and Y

4

5 x = 1 // pointer to current position in X

6 y = 1 // pointer to current position in Y

7 X[m+1] = infinity // keep from falling off end

8 Y[n+1] = infinity // keep from falling off end

9 output = [] // initialize output as empty array

10

11 for i = 1 to m + n:

12 if X[x] < Y[y]:

13 output[i] = X[x]

14 x = x + 1

15 else:

16 output[i] = Y[y]

17 y = y + 1

18

19 return output

For simplicity, we will always assume that we are sorting a list of 2k numbers for some k ∈ Z≥0. Thinking
only about powers of two make our lives easier without losing any real generality.



Yang 2 October 21, 2016

Binary Search

Binary Search searches a sorted list for an element by looking at the middle and, if necessary, recursively
searching through one of the halves. Since the list is sorted, it knows which half to look.

1 binarySearch(A[1 ... n], x):

2 // Input: a sorted array A; an element x

3 // Output: is x in the (sorted) array A?

4

5 if n == 0:

6 return False

7 middle = n/2 rounded down

8 if A[middle] == x:

9 return True

10 else if A[middle] > x:

11 return binarySearch(A[1 ... middle-1], x)

12 else

13 return binarySearch(A[middle+1 ... n], x)

Max

Max splits the array in half, finds the max of each half recursively, and then returns the bigger of the two
results.

1 max(A[1 ... n]):

2 // Input: an array A

3 // Output: max element

4

5 if n == 1:

6 return A[1]

7 middle = n/2 rounded down

8 x = max(A[1 ... middle])

9 y = max(A[middle+1 ... n])

10 if x > y:

11 return x

12 else:

13 return y

Bonus: Selection Sort

Selection Sort sorts by repeatedly selecting the minimum element in the unsorted segment and swapping it
into place.

1 selectionSort(A[1 ... n]):

2 // Input: an array A

3 // Ouptut: A in sorted order

4

5 for i = 1 to n:

6 minIndex = i

7 for j = i+1 to n:

8 if A[j] < A[minIndex]:

9 minIndex = j

10 swap A[i] and A[minIndex]


	Merge Sort
	Binary Search
	Max
	Bonus: Selection Sort

