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1. Lower bound analysis for comparison-based sorting

A comparison-based sorting algorithm sorts by comparing two items at a time. One way to
think about this is suppose we access information about the items only by using calls of the form
thisItem.compareTo(otherItem). Track the number of such calls.

Theorem 1. Comparison-based sorting requires Ω(n log n) comparisons to sort n items (in the
worst case).

Proof. Making k comparisons yields 2k possible outcomes. We have n! possible permutations of the
n items, which must be distinguishable by the outcomes of the k comparisons. Therefore, 2k ≥ n!.
(Think of this as playing “20 questions” where I am secretly thinking of a permutation of n items,
and you must determine that permutation by asking k yes/no questions of the type “is item 23

before item 201?”) Now n! ≥ (n/2)n/2, so k ≥ n
2 log2

n
2 = Ω(n log n). �

2. Average analysis for quick sort

Theorem 2. Sorting n items with quick sort uses O(n log n) comparisons on average.

For simplicity, suppose we are sorting unique elements. Let x = (x1, . . . , xn) be a permuta-
tion of {1, 2, . . . , n} chosen uniformly at random. Let T (n) be the expected (average) number of
comparisons when sorting x.

Proof. Make n− 1 comparisons of the pivot with everything else. There are i things smaller than
the pivot and n− i− 1 things bigger. Note that i is uniformly distributed. So we have

T (n) = (n− 1) + 1
n

n−1∑
i=0

T (i) + T (n− i− 1)

= n− 1 + 2
n

∑
T (i)

nT (n) = n(n− 1) + 2
∑

T (i) cross multiply (*)

nT (n)− (n− 1)T (n− 1) = n(n− 1)− (n− 1)(n− 2) + 2T (n− 1) subtract (*) with (*)

nT (n) = (n + 1)T (n− 1) + 2(n− 1)

T (n)
n+1 = T (n−1)

n + 2(n−1)
n(n+1)

≤ T (n−1)
n + 2

n+1

≤ T (n−2)
n−1 + 2

n + 2
n+1

...

≤ T (1)
2 + 2(13 + 1

4 + · · ·+ 1
n+1) = O(log n)

So T (n) = O(n log n), as desired. �

If we use a binary search tree (BST), we can get a one-line proof by using linearity of expectation:
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Proof. The number of comparisons of quick sort on x is the number of comparisons when building
a BST when we add items of x in order. For i < j, let Xij be the indicator that xj is compared
to xi (when adding xj). Let X =

∑
i<j Xij . Note that (x1, . . . , xi, xj) is a permutation of those

i + 1 elements chosen uniformly at random. So xj is next to xi with probability 2/(i + 1). So, by
linearity of expectation, we have

E[X] =
∑
i<j

E[Xij ] =
∑
i<j

2
i+1

∗
= O

∑
j

log(j)

 = O(n log n),

where ∗ is because
∫ j−1
0

1
x+1 dx = log j. �

3. Amortized analysis for adding to the end of an ArrayList

For ArrayList, what is the complexity of add(E item) where we add an item to the end?
Technically it is O(n) since we may need to double the size of the array, which involves copying the
n items from the old array to the new array. However, these is a way around it. We can consider
the cost per add operation averaged over all add operations. This is known as amortized analysis
(cf. Wikipedia article).

Theorem 3. The total cost of the first n ArrayList.add(E item) operations is O(n), so, on
average (“amortized”), add(E item) is O(1).

Proof. One way to think about this is as follows. Each time we add, we pay a cost of adding this
item to the end of the array and two “tokens” that can be used to copy entries for free later (like
savings in a bank).

When we are to double the array for the first time, say, from 10 to 20, we’ve already accumulated
20 tokens, so we use 10 of them to pay for array resizing. To make accounting easier, let us throw
away the remaining 10 tokens—we will not need them.

When we want to double the array a second time, say, from 20 to 40, we would have collected
20 more tokens (2 for each of the 10 newly added items). That is exactly enough for us to pay for
copying 20 items and left with 0 tokens.

The next time, say, from 40 to 80, we’ve added 20 more items, got 40 tokens, and can exactly
pay for 40 copy operations.

In this way, we can see that the time it takes to add n items is at most the cost of adding n
items at the end of an array (an O(n) cost) and the cost of making 2n copies (also an O(n) cost).
If adding n items in total is O(n), then adding one item on average is O(1). �

For this class, we will consider adding to the end of an array as an O(1) operation.

4. Average analysis for binary search trees

Theorem 4. A binary search tree with n nodes has height O(log n) on average.

This is (way) too hard.
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5. Bulk adding to a heap

Theorem 5. Bulk adding n items to a heap is O(n).

Proof. Put all n items in an array in arbitrary order. Starting from the end and working backwards,
reheap the semiheap rooted at every node. In level i, there are at most 2i−1 nodes, each taking
O(h− i + 1) steps to reheap.

h∑
i=1

(h− i + 1)2i−1 = h + (h− 1) · 21 + (h− 2) · 22 + · · ·+ 1 · 2h−1

= 1 + 2 + 4 + · · ·+ 2h−2 + 2h−1

+ 1 + 2 + 4 + · · ·+ 2h−2

...

+ 1 + 2

+ 1

< 2h + 2h−1 + · · ·+ 1 < 2h+1 = O(n)

�
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