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Abstract. In 1995, Beauquier, Nivat, Rémila, and Robson showed that tiling of general regions
with two rectangles is NP-complete, except for a few trivial special cases. In a different direction,
in 2005, Rémila showed that for simply connected regions by two rectangles, the tileability can be
solved in quadratic time (in the area). We prove that there is a finite set of at most 106 rectangles for
which the tileability problem of simply connected regions is NP-complete, closing the gap between
positive and negative results in the field. We also prove that counting such rectangular tilings is
#P-complete, a first result of this kind.

1. Introduction

The study of finite tilings is a classical subject of interest in both theoretical and recreational
literature [Gol1, GS]. In the tileability problem, a finite set of tiles T is fixed, and a region is
an input. This problem is known to be polynomial in some cases, and NP-complete in others
(see [Pak]). Over the years, the hardness results were successively simplified (in statement, not in
proof), with both sets of tiles and the regions becoming more restrictive. This paper is a new step
in this direction.

In [BNRR], it was shown that tiling of general regions with two bars is NP-complete, except
for the case of dominoes. In a different direction, Rémila [Rem2] (building on the ideas in [KK,
Thu]), showed that for simply connected regions and two rectangles, the tileability can be solved in
quadratic time (in the area). The following theorem closes the gap between these polynomial and
NP-complete results.

Theorem 1.1 (Main Theorem) There exists a finite set R of at most 106 rectangular tiles, such
that the tileability problem of simply connected regions with R is NP-complete.

Our proof of the Main Theorem is split into two parts. In the first part, we use the language of
Wang tiles to reduce the Cubic Monotone 1-in-3 SAT problem, known to be NP-complete, to
the T-tileability of simply connected regions with Wang tiles. In the second part, we reduce Wang
tileability to tileability with rectangular tiles. Both our reductions are parsimonious and are used
to prove that counting the number of tilings of simply connected regions is also hard, via reduction
from 2SAT.

Theorem 1.2 There exists a finite set R of at most 106 rectangular tiles, such that counting the
number of tilings of simply connected regions with R is #P-complete.

Although #P-completeness is known for tilings of general regions with right tromino and square
tetromino [MR], nothing was known previously for tilings with rectangles. We refer to Section 7
for the history of the problem, references, and further remarks.
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2. Definitions and basic results

2.1. Ordinary tiles. Consider the integer lattice Z
2 as a union of closed unit squares with pairwise

disjoint interiors. A region is a finite union of such unit squares such that the interior is connected.
An (ordinary) tile is a finite simply connected region.

A tileset T is a collection of tiles. Given a region Γ and a tileset T, a T-tiling of Γ is a union
of translated copies of tiles from T with pairwise disjoint interiors covering Γ. If a region admits a
T-tiling then it is T-tileable. We may simply say tiling and tileable when T is understood. Consider
the following decision problems regarding tileability:

Simply Connected Tileability
Instance: Simply connected region Γ, finite tileset T.
Decide: Whether Γ is T-tileable?

Simply Connected T-Tileability
Instance: Simply connected region Γ.
Decide: Whether Γ is T-tileable?

An input region can be given by the (finite) union of the squares it contain. The following is one
of the early NP-completeness results [GJ].

Theorem 2.1 If both region Γ and tileset T are part of the input, Simply Connected Tileabil-
ity is NP-complete in the plane.

For the rest of the paper, we will focus on finding a fixed T such that Simply Connected
T-Tileability is NP-complete. The following result is an extension of Theorem 2.1.

Theorem 2.2 There exists a set T of 23 tiles, such that Simply Connected T-Tileability is
NP-complete.

The proof follows an explicit construction of Wang tiles (see below). While we do not use
Theorem 2.2, it is of independent interest, and the intermediate results in its proof provide a key
step towards the proof of the Main Theorem. The history behind this theorem and its potential
generalizations is outlined in Subsection 7.1.

2.2. Wang tiles. The edges of an ordinary tile are the unit-length edges on the boundary. Given
a set of colors and an ordinary tile τ , a generalized Wang tile is an assignment of colors to the
edges of τ . Note that an (ordinary) Wang tile is a generalized Wang tile of a unit square. The
region Γ we are trying to tile will also have specified colors on its boundary. A region is (Wang)
tileable if there is a tiling where incident edges have the same color, including on the boundary of
the region (see Figure 1). If a tileset consists of (generalized) Wang tiles, tileability always means
Wang tileability.

Figure 1: A colored region (left) and a Wang tiling (right). Colored edges are drawn as triangles
for visibility.
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2.3. Relational Wang tiles. Let us consider a more general setting. A set of relational Wang
tiles is a collection W of squares and the following data. The vertical (respectively horizontal)
Wang relation VW(τ, τ ′) (respectively HW(τ, τ ′)) specify that τ ′ ∈ W is allowed to be placed
immediately below (respectively to the right of) τ ∈ W. We suppress the subscripts when it can
be understood from context. The boundary tiles of a region Γ is a map from the exterior edges of Γ
to the tiles W. By abuse of language, we define the notion of tiling in this context: a W-tiling of
a region Γ is a map π : Γ → W such that tiles placed next to each other satisfy the Wang relations.
Whenever a tile is adjacent to an exterior edge, we check the Wang relations as if the boundary
tile corresponding to the edge is on the other side of the edge.

2.4. Complexity. Throughout the paper we consider many tiling problems that are NP-complete.
All these problems are trivially in NP. Indeed, given a description of a tiling, one could simply check
if it is in fact a tiling. To prove NP-hardness, we reduce a known NP-complete problem to the
problem in question. We refer to [GJ, Pap] for definitions and details.

We will embed Cubic Monotone 1-in-3 SAT as a tiling problem. Let X = {x1, . . . , xn} be a set
of boolean variables. A (monotone 1-in-3) clause C is a set of three variables. A (cubic monotone
1-in-3) expression E is a finite collection C of monotone 1-in-3 clauses, where each variable xi ∈ X

occurs three times. We say such E is (1-in-3) satisfiable if there is an assignment of boolean values
{0, 1} to the variables xi ∈ X such that each clause in E contains precisely one variable receiving 1
(and thus two variables receiving 0).

Cubic Monotone 1-in-3 SAT
Instance: Set X of variables, cubic monotone expression E.
Decide: Whether E is 1-in-3 satisfiable?

The following result was shown by Gonzalez in the language of exact covers:

Theorem 2.3 ([Gon]) Cubic Monotone 1-in-3 SAT is NP-complete.1

We will reduce Cubic Monotone 1-in-3 SAT to a tiling problem Simply Connected T-
Tileability for some fixed T.

2.5. Counting problems. Throughout the paper we consider natural counting problems corre-
sponding to the decision problems. For example, instead of asking whether satisfying assignments
exist, we ask how many satisfying assignments there are. Similarly, for tileability, we count the
number of tilings. If in the proof of NP-completeness, the corresponding reductions give a bijection
between the sets of solutions, we call such reduction parsimonious.

Parsimonious reductions have the additional benefit of proving counting results using the same
reduction. The class #P consists of the counting problems associated with decisions problems
in NP. A counting problem is #P-complete if it is in #P and every #P question can be reduced to
it. Thus, if there is a parsimonious reduction from problem Q1 to Q2, then if Q1 is #P-complete,
then so is Q2. We refer to [Val] (see also [Pap]) for definitions and details on #P complexity class.

One main goal is to reduce Cubic Monotone 1-in-3 SAT to a tiling problem Simply Con-
nected T-Tileability for some fixed T. This reduction will turn out to be parsimonious, hence
the number of satisfying assignments of a given instance of the satisfiability problem can be calcu-
lated by counting the number of tilings of the transformed instance.

However, it is not known whether the associated counting problem #Cubic Monotone 1-in-
3 SAT is #P-complete. To get the #P-completeness result in Theorem 1.2, we will modify the
reduction to use 2SAT instead, whose associated counting problem #2SAT is #P-complete.

1Given an expression E, we can associate a bipartite graph G with vertex set X ⊔ C, where a variable x ∈ X is
adjacent to a clause C ∈ C if x ∈ C. Moore and Robson showed something stronger in [MR], that this problem is
NP-complete even if we require the associated graph to be planar. They did this by reducing from Planar 1-in-3
SAT, which is NP-complete [Lar, MuR]. However, we do not need to use the planar version.
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3. Reduction lemmas

3.1. Basic reductions. In this section we consider five classes of Tileability problems. Let T
be a collection of tiles and R be a collection of regions. A decision problem in (T ,R)-Tileability
consists of a fixed tileset T ⊂ T , receives some Γ ∈ R as input, and outputs whether Γ is T-tileable.

We say (T ,R)-Tileability is linear time reducible to (T ′,R′)-Tileability if for any finite
tileset T ⊂ T , there exists a finite tileset T′ ⊂ T ′ and a reduction map f : R → R′ that is
computable in linear time (in the complexity of Γ ∈ R), such that Γ ∈ R is T-tileable if and only
if f(Γ) is T′-tileable.2 If, moreover, that (T ′,R′)-Tileability is linear time reducible to (T ,R)-
Tileability, then they are linear time equivalent. Note that the transformation of the tilesets
need not be efficient nor bijective.

For instance, if T is the collection of all rectangular tiles and R consists of simply connected
regions, then (T ,R)-Tileability is a class of problems regarding tiling simply connected regions
with rectangular tiles. To simplify the notation, we drop the prefix in (T ,R)-Tileability when
the sets T and R are understood.

Lemma 3.1 (Tileability Equivalence Lemma) The following five classes of Simply Connected
Tileability problems are linear time equivalent:

(i) Tileability with a fixed set of rectangular tiles.
(ii) Tileability with a fixed set of ordinary tiles.
(iii) Tileability with a fixed set of generalized Wang tiles.
(iv) Tileability with a fixed set of ordinary Wang tiles.
(v) Tileability with a fixed set of relational Wang tiles.

Moreover, the size of the tileset can be preserved in the reductions between (ii) and (iii).

Proof. The reductions (i)⇒(ii)⇔(iii)⇒(iv)⇒(v) are elementary and given below. The reduction
(v)⇒(i) is stated separately as Lemma 3.3 and proved in the next section.

We may consider a rectangular tile as an ordinary tile, which in turn is a monochromatic gen-
eralized Wang tile. Therefore the reductions (i)⇒(ii)⇒(iii) are immediate, where each reduction
map is simply the identity.

(iii)⇒(iv). Given a set of generalized Wang tiles, color each interior edge with a new color not
used anywhere else, and consider each square as a separate ordinary Wang tile (see Figure 2). These
tiles are forced to reassemble themselves as the original generalized Wang tiles. The reduction map
is again the identity.

(iv)⇒(v). It is obvious how to define the Wang relations to mimic the colored Wang tiles without
increasing the number of tiles. To encode the boundary conditions, we may need to introduce less
than 4χ tiles, where χ is the number of colors permitted on the boundary. Indeed, to specify a
color c on the top boundary, we need to choose an (arbitrary) tile whose bottom color is c. If no
such tile exists, we must add a new tile to do so. If we do not involve the new tile in any Wang
relations in the other directions, then it will never be used in the actual tiling, and thus will not
affect tileability. We do the same for the other three directions.

The final reduction (v)⇒(i) is more difficult and is the content of Lemma 3.3 and proved in a
later section.

To preserve the number of tiles in (iii)⇒(ii), scale the generalized Wang tile and replace each
colored edge by an appropriate rectilinear zig-zag curve to encode the matching rules (see Figure 3
and [Gol2]). ¤

2Recall that the tiles in the input are given as collections of unit squares.
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Figure 2: From generalized Wang tiles to ordinary ones.

Figure 3: Replacing each colored edge by a zig-zag curve to get ordinary tiles.

3.2. Two main reductions.

Lemma 3.2 (First Reduction Lemma) There exists a set T of at most 23 generalized Wang tiles
with total area 133 and using 9 colors such that Simply Connected T-Tileability is NP-
complete. Moreover, this will be achieved by a parsimonious reduction from Cubic Monotone
1-in-3 SAT.

Lemma 3.3 (Second Reduction Lemma) For a set W of at most k (ordinary) Wang tiles with c

(boundary) colors, there exists a set R of at most 8(k + 4c)2 rectangular tiles with the following
property. Given a simply connected colored region Γ, there is a simply connected region Γ′ such that
Γ is W-tileable if and only if Γ′ is R-tileable. Moreover, this reduction is parsimonious and can be
computed in linear time.

We may transform the set of 23 generalized Wang tiles afforded by Lemma 3.2, according to the
procedure outlined in (iii)⇒(ii) of Lemma 3.1, in order to obtain Theorem 2.2 using 23 ordinary
tiles. Similarly, using the transformation of Lemma 3.3, we conclude the result for rectangular
tiles in Theorem 1.1 (see Subsection 6.1). Theorem 1.2 can be shown by modifying the proof
of Lemma 3.2 to achieve a parsimonious reduction from, say, 2SAT, whose associated counting
problem is #P-complete (see Subsection 6.2).

4. Proof of the First Reduction Lemma (Lemma 3.2)

4.1. General setup. The goal of this section is to construct a set of generalized Wang tiles that
could be used to solve Cubic Monotone 1-in-3 SAT. Each expression will be encoded as a colored
rectangular boundary. Tiles corresponding to variables and clauses will appear on the left and right
sides of the region, respectively. The variable tiles will “transmit” its state (0 or 1) through “wires”
to the clause tiles; each clause tile will “check” if precisely one out of three signals it receives is 1.
The path of the transmissions will be regulated by placing “crossover tiles” that allow signals to
crossover at specific locations. The positioning of such tiles will be enforced by using a combination
of “control tiles” that follow instructions encoded on the boundary. Empty spaces will be filled by
“filler tiles.”

4.2. Tileset T. Let T be a tileset with the 7 small tiles shown in Figure 4 and the 3 big tiles in
Figure 5. Some horizontal edges are colored by their labels; all unlabeled edges are colored by 0,
which is omitted in the figures for clarity, but acts as any other ordinary color.
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Figure 4: Tiles in tileset T.
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(a) crossover tile X
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(b) variable tile V

7
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(c) clause tile C

Figure 5: More tiles in T.

4.3. Tileset T′. Recall that the vertical edges of our tiles in T are all colored with 0. Form T′ by
recoloring the vertical edges of tiles in T as follows. Given each small tile τ ∈ T in Figure 4, we
introduce a variant by coloring all its vertical edges with 1. The color of the vertical edges is called
the parity of τ . Include both this variant and the original in T′.

Given a rectangular array of these tiles, the parities are consistent across each row and are
independent across the columns. Intuitively, these tiles act as wires that can transmit data (parity
of the tile) horizontally across the region.

We continue defining T′. We add three new versions of the crossover tile X as in Figure 6a.
Intuitively, this allows the data transmissions to crossover. We also add a variant of the variable
tile V , as in Figure 6b, where all the right vertical edges are colored with 1. The parity of the
variable tile corresponds to the truth value assigned to that variable. Finally, we replace the clause
tile C by the three shown in Figure 6c, where each tile has one out of three pairs of left vertical
edges colored with 1. Thus T′ consists of 23 tiles.

We will place the variable tiles on the left and the clause tiles on the right. It remains to send
the data from the variables to the correct clauses. We achieve this by specifying boundary colors
to force crossover tiles to appear at the desired locations.

4.4. Reduction construction. Our goal is to embed the decision problem Cubic Monotone
1-in-3 SAT as a tiling problem. Given a cubic monotone 1-in-3 SAT expression E with variables
X = {x1, . . . , xn} and clauses C = {C1, . . . , Cn}, consider it as a permutation σ = σE ∈ S3n in
the symmetric group on 3n letters as follows. Think of σ as a bijection from the ordered multiset
X ′ = {x1, x1, x1, x2, . . . , xn} to the ordered multiset C′ = {C1, C1, C1, C2, . . . , Cn}, where each
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(c) clause tile

Figure 6: Variations of tiles in T.

variable and each clause is listed three times. For each xi ∈ Cj , we have σ(xi) = Cj once. Now
identify each multiset with [3n] = {1, 2, . . . , 3n} to get σ as a permutation in S3n. Let si = (i, i+1)
be an adjacent transposition for i ∈ [3n − 1]. Write σ = si1si2 . . . sid as a product of adjacent
transpositions, with d = O(n2).3

Let ck be the color sequence 01(02)k−163. Define a rectangular region Γ = ΓE as follows. The
height of Γ is 6n and the vertical edges are colored with 0. The width is the length of the color
sequence 7ci1ci2 . . . cid07, which is used as the top boundary. The bottom boundary is 7(08)t07
with the same length as the top boundary. The following result demonstrates the ability to place
the crossover tile X at arbitrary depth of a large rectangular region.

Sublemma 4.1 The region Γ admits a unique T-tiling.

Proof. The left and right sides are forced to be filled with variable and clause tiles, respectively.
Now consider the section in between.

For k ≥ 1 and ℓ ≥ 0, consider a row of tiles LW kSℓR (meaning an L tile followed by a W tiles k

times, an S tile ℓ times, and ending with an R tile). The bottom color sequence is 01(02)k(62)ℓ63.
One easily checks that the unique way to tile the next row is with LW k−1Sℓ+1R.

If k = 0, we get the case where we have a row LSℓR with bottom color sequence 01(62)ℓ63. The
unique way to tile the next row is with XBℓK.

The section below will be filled by filler tiles F . Thus every section below ci is filled uniquely,
with the crossover tile X occupying rows i and i + 1 in the first column. ¤

The above proof is illustrated with two examples in the next subsection.

Corollary 4.2 The expression E is satisfiable if and only if ΓE is T′-tileable. Moreover, the reduc-
tion is parsimonious, that is, the number of tilings of ΓE is the number of satisfying assignments
for E.

The corollary follows immediately from the construction given above, and concludes the proof
of Lemma 3.2.

3For illustration purposes, it is often convenient to encode the product of adjacent transpositions using wiring

diagrams, as shown in Figures 7a and 8a.
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4.5. Examples of the tiling construction. In Figure 7 we show how to place a crossover
tile in a special case, corresponding to expression {(x, y, x), (x, y, y)}. We illustrate the cross-
ings with a wiring diagram and then give a complete Wang tiling. In Figure 8 below we give a
bigger example of the wiring diagram and the unique Wang tiling, corresponding to expression
{(x, y, x), (x, y, z), (y, z, z)}.
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(b) Unique tiling

Figure 7: A small example of how to place crossover tiles.

5. Proof of the Second Reduction Lemma (Lemma 3.3)

5.1. Basics. In this section, we provide a further connection between Wang tiles and ordinary
rectangular tiles (by making a reduction from the latter to the former). Recall that by Lemma 3.1,
we can replace generalized Wang tiles with relational Wang tiles.

Without loss of generality, we may assume that the Wang relations are irreflexive, that is,
there is no tile τ such that H(τ, τ) or V (τ, τ). Indeed, suppose W is a set of Wang tiles. Let
W′ = {τi : i ∈ {0, 1}, τ ∈ W} be a doubled set of tiles. Define its horizontal Wang relation
as follows. For τ, τ ′ ∈ W and i, j ∈ {0, 1}, let HW′(τi, τ

′

j) if and only if HW(τ, τ ′) and i 6= j.

Its vertical Wang relation is defined analogously. It is clear that the Wang relations of W′ are
irreflexive. Moreover, a W-tiling can be made into a W′-tiling by adding subscripts to the tiles in
a checkerboard fashion, while the reverse can be done by ignoring the subscripts. Of course, the
same transformation is done on the boundary tiles as well. Clearly this does not affect tileability
nor the number of such tilings.

From now on, assume we are given a fixed set W of relational Wang tiles whose relations H

and V are irreflexive. Our goal is to produce a fixed set R of rectangular tiles with the following
property: Given any simply connected region Γ with specified boundary tiles, we can produce (in
linear time) a simply connected region Γ′ such that Γ is W-tileable if and only if Γ′ is R-tileable.
Moreover, the number of W-tilings of Γ will be the same as the number of R-tilings of Γ′.

For simplicity, we first consider the case where we are given an r × c rectangular region Γ with
specified boundary tiles.

5.2. Expansion. From this point on, we only consider tiling using rectangular tiles. Fix M and
e to be positive integers. Given a region Γ0, we obtain an (M, e)-expansion Γ by scaling Γ0 by
a factor of M and then perturb it by moving each corner vertex of the boundary curve of the
region Γ, at most e in each direction, such that Γ is still a region (with rectilinear edges). Recall
that a (rectangular) tile is just a simply connected region, thus the notion of (M, e)-expansion of a
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(b) Unique tiling

Figure 8: A bigger example of the unique base tiling.

tile is defined. A tileset T is an (M, e)-expansion of a tileset T0 if each τ ∈ T is an (M, e)-expansion
of some τ0 ∈ T0.

A tiling π of a region Γ is an (M, e)-expansion of a tiling π0 of some region Γ0 if it can be
obtained by dilating by a factor of M , and then perturbing the tiles and the region by at most e

as above. Note that after scaling, each tile may grow or shrink in each dimension by at most 2e,
and can shift around from its starting point by at most e.

Given a tileset T0 and an (M, e)-expansion T, a region Γ respects the expansion if there is a
unique region Γ0 such that any T-tiling of Γ is an (M, e)-expansion of a T0-tiling of Γ0.

Intuitively, we will choose M > 100e, say, and carefully perturb only a few tiles, so that when
consider tilings of regions respecting the expansion, we can essentially predict what the new tiling
can be based on the original tiling.
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5.3. Rectangular tiles R0 and the region Γ0(r, c). Consider the following tileset:

R0 = {f = R(34, 11), w = R(31, 14), s = R(10, 10), h = R(11, 31), v = R(14, 34)} ,

where R(a, b) denotes a rectangle of height a and width b (see Figure 9). For a rectangle t, write
htt and wdt for its height and width, respectively.

f

(a)

w

(b)

s

(c)

h

(d)

v

(e)

Figure 9: Rectangular tiles R0: (a) fixed rectangle f , (b) fixed rectangle w, (c) flexible square s,
(d) flexible rectangle h, and (e) flexible rectangle v.

Now consider the region Γ0(r, c) defined as follows (see Figure 10). On each vertical side, there
are r protrusions of height hth and width wds, separated by height htf . On each horizontal side,
there are c cavities of width wdv and height hts, separated by width wdf .

wd s

hht

sht

wd f

wd v

fht

Figure 10: Boundary region Γ0(2, 2).

Sublemma 5.1 The unique R0-tiling of Γ0(r, c) consists of r rows and c columns of the w tile.

Proof. Fix natural numbers a = 10 and b = 1. The tiles introduced above can now be written as
f = R(3a+4b, a+b), w = R(3a+b, a+4b), s = R(a, a), h = R(a+b, 3a+b), and v = R(a+4b, 3a+4b).

We begin with a few definitions. A horizontal (vertical) segment of a region is called bounded
if the region extends downward (to the right) on both sides of the segment. For t ∈ {v, h}, a pair
(t, s) is the configuration of placing the tile s above or below t, aligned on the left. The orientation
of the pair is positive (negative) if s is placed below (above). Similarly, for t ∈ {w, f}, a pair (t, s) is
obtained by placing s to the left or right of t, aligned on top. The orientation is positive (negative)
if s is placed to the right (left). A bounded segment is tiled by a tile (pair) if in all tilings, the tile
(pair) is adjacent to the segment.

We will tile the region Γ0(r, c) in steps, as indicated by the numbers labeled on Figure 11. Note
that since a > b, each bounded horizontal segment of width wdf on the top border must be tiled
by f tiles, labeled 1. Similarly on the left, the bounded vertical segments of height hth must be
tiled by h tiles, labeled 2. This creates a bounded vertical segment of height htv + hts on the top
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left corner; since a > 3b, it is tiled by the pair (v, s), labeled 3. Since a > 4b, it is obvious that it
needs to be positively oriented, to avoid a hole of width wdv −wds and height hts, which cannot
be filled.

h

v

s

f w

1 1 1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

14

14

15

15

16

16

17

18

18

19

19

20

21

21

22

Figure 11: Unique base tiling labeled by order.

Note that since a > 3b, this creates a new bounded horizontal segment of width wdw + wds,
which is tiled by the pair (w, s), labeled 4. If w is on the left, it will create a bounded horizontal
segment of width wdf + wds to its left. Otherwise, if w is on the right, several s will be forced
to appear on the left and still create the same bounded segment. Therefore, the (w, s) pair creates
the bounded segment, regardless of how it is oriented.

Since a > 3b, this bounded horizontal segment of width wdf + wds is again tiled by an (f, s)
pair, labeled 5. Like the (v, s) pair above, since a > 4b, this needs to be positively oriented. This
creates the bounded vertical segment of height htv +hts, tiled by a pair (v, s), labeled 6, as above.
In either orientation, it bounds the vertical segment of height htw above, concluding that the
(w, s) pair (labeled 4) we placed above needs to be positively oriented. Furthermore, this bounds
the vertical segment of height hth+hts, again tiled by the pair (h, s), labeled 7. As before, in either
orientation, we have a bounded vertical segment of height htv + hts, which necessarily needs to
be tiled by the positively oriented pair (v, s), labeled 8. This creates a bounded horizontal segment
of width wdw + wds.

We continue in like manner, working our way on the anti-diagonal from top right to bottom left.
Each time we place the pair (w, s), forcing the adjacent pair (h, s) placed in the previous stage to
be positively oriented. Then we place (f, s), forcing the adjacent (v, s) to be positively oriented as
well. This procedure repeats with (w, s) and (f, s) in an alternating fashion. The last (f, s) will be
placed in positive orientation and creates a bounded vertical segment of height htv + hts.

Similarly, we work from bottom left to top right on the next anti-diagonal. We alternate between
placing (v, s) and (h, s) pairs, positively orienting the (w, s) and (f, s) pairs in the previous stage,
respectively. This continues until the entire region is filled. ¤
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5.4. Expansion R of R0. We will now define a clever set of perturbed expansion tiles that will
correspond to the relational Wang tiles. Only the tiles s, h, and v will have perturbations. Let
W = {τ1, . . . , τn} be the fixed set of relational Wang tiles with irreflexive horizontal and vertical
Wang relations H and V , respectively. Fix e = 5n and M = 100e for the remainder of the section.
Let R be an (M, e)-expansion of R0 as follows:

For t ∈ {s, h, v}, let t(a, b) be the scaled version of t with height and width increased by a and
b, respectively. Imagine that the h and v tiles can stretch horizontally and vertically, respectively,
and the s tiles can stretch in both directions. Then the w tiles, having no perturbations, will only
shift around a little (by at most e). The f tiles will stay fixed, enforcing the global structure. See
Figure 12. A w tile will be shifted to the right and down by 5i to represent the Wang tile τi. To
restrict the shifts to only those sizes, we replace s with the appropriate perturbed versions. Namely,
for each i, introduce four tiles with perturbations s(±5i,±5i), where all four combinations of signs
are included. To enforce the Wang relations, for each τi, τj ∈ W such that V (τi, τj) or H(τi, τj), we
introduce the perturbation v(5j − 5i, 0) or h(0, 5j − 5i), respectively. This is the set R we will use.

τ

τj

i

Figure 12: Shifting an expansion of the unique tiling to represent Wang tiles.

5.5. Rectangular tiling. Obtain an (M, e)-expansion Γ(r, c) of Γ0(r, c) by scaling with a factor
of M and then perturbing it as follows. Recall that there are r protrusions on each vertical side
and c cavities on each horizontal side. Each protrusion or cavity corresponds to a boundary tile of
Γ in a natural way. Perturb the protrusion or cavity to the right or down, respectively, by 5i units
if it corresponds to τi.

Sublemma 5.2 The (M, e)-expansion Γ(r, c) of Γ0(r, c) respects the expansion R of R0.

Proof. Recall the argument in the proof of Sublemma 5.1. As the inequalities are all satisfied, the
f tiles are fixed and force the perturbations to stay local. The w tiles have two degrees of freedom.
They can move ±5i in each direction, as regulated by the s tiles. Now note that the inequalities in
the proof of Sublemma 5.1 are preserved. We leave the (easy) details to the reader. ¤

We now return to the proof of Lemma 3.3. It is clear that given a Wang W-tiling of the rectangle
Γ with boundary, we will get an R-tiling of Γ(r, c). Indeed, simply take the unique tiling of Γ0(r, c)
as afforded by Sublemma 5.1, scale by a factor of M , and then shift each w tile to the right and
down by 5i if it represents τi, and adjust the other tiles in the obvious way.

Conversely, if we are given an R-tiling of Γ(r, c), we wish to recover the W-tiling of Γ. This
is achieved using the following two sublemmas, both of which are clear when all numbers are
considered in base 5; we omit the (easy) details.



TILING SIMPLY CONNECTED REGIONS WITH RECTANGLES 13

Sublemma 5.3 The equation 5i − 5j = 5k + 5ℓ does not admit a solution in N.

Therefore each w tile will shift to the right and down (as opposed to shifting left or up), and
hence indeed represents a Wang tile τi for some i.

Sublemma 5.4 The equation 5i − 5j = 5k − 5ℓ does not admit solutions in N except if i = j or
i = k.

If a w tile representing τj is to the right of a w tile representing τi, then h(0, 5j − 5i) must be in
R. By the sublemma above, the differences 5j − 5i are all distinct (recall that the Wang relations
are irreflexive, so i = j does not happen), therefore we must have had H(τi, τj) as part of the Wang
relation. Similarly for the vertical Wang relation V . So by reading off the associated tile τi from
the shifts of each w tile, we get a Wang W-tiling of Γ.

This completes the construction of Γ0(r, c) for the case when Γ is a rectangle. For the general
case, when Γ is a simply connected region, the proof follows verbatim after replacing Γ(r, c) and
Γ0(r, c) by appropriate regions.

It remains to get the upper bound estimates on the number of rectangles involved in the con-
struction. Suppose we are given a set of k ordinary Wang tiles using c colors (on the boundary).
By Lemma 3.1 we can equivalently consider a set of less than k + 4c relational Wang tiles. To
satisfy irreflexivity, we might need to double the set of tiles, resulting in n = |W| < 2(k + 4c) tiles.
When making R, we will have one each of f and w tiles. There will be 4n perturbed s tiles and at
most n2 perturbed h and v tiles each. In total,

|R| ≤ 2n2 + 4n + 2 = 2(n + 1)2 ≤ 8(k + 4c)2.

This concludes the proof of Lemma 3.3.

6. Proof of theorems

6.1. Proof of Theorem 1.1. In the proof of Lemma 3.2 in Section 4, we constructed the set
W of 23 generalized Wang tiles using 9 colors, such that Simply Connected W-Tileability
is NP-complete. It remains to count the total number of rectangles we obtain from the series of
reduction constructions.

First, we compute the number of ordinary Wang tiles given by the transformation in Lemma 3.1.
Observe that the total area of tiles in W is 9 · 5 + 8 · 4 + 4 · 14 = 133. Therefore we can break them
into 133 ordinary Wang tiles by adding 133− 23 more colors. But as these colors do not appear on
the boundary, they need not be counted. Hence, in Lemma 3.3, we can take k = 133 and c = 9,
thus giving us at most 106 rectangles. ¤

6.2. Proof of Theorem 1.2. First, note that the reduction in the proof of Theorem 1.1 is par-
simonious. However, there seems to be no #P-completeness result for the #Cubic Monotone
1-in-3 SAT problem. This is easy to fix by making a similar reduction from the 2SAT problem,
whose associated counting problem is #P-complete (see [Val]).

An instance of 2SAT is a set of variables and a collection of clauses. Each clause is a disjunction
of two literals, where each literal is either a variable or a negated variable. The problem is to decide
whether there is a satisfying assignment such that each clause has at least one true literal. We
modify the proof of Lemma 3.2 to obtain a parsimonious reduction from 2SAT. By replacing the
two variations of the variable tile by the ones shown in Figure 13a, we may set up unnegated and
negated copies of a single variable. Indeed, with a sequence of 5(26)r−136(26)s−14 as colors on the
left vertical edge, we create a list of r + s variables, where the last s are negated. By replacing the
three variants of the clause tile by the three obvious candidates in Figure 13b, we force each clause
to be satisfied.
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(b) clause tiles

Figure 13: Tiles for 2SAT.

Note that the modified tileset has a smaller total area, and has the same number of colors used
on the boundary. Therefore as in the proof of Theorem 1.1, we apply Lemma 3.3 to conclude that
106 rectangles suffice. ¤

7. Final remarks and open problems

7.1. Theorem 2.1 was only announced in [GJ], referencing an unpublished preprint. Of course,
now we have much stronger results.

A version of Lemma 3.2 was first announced in Levin’s original 1973 short note regarding NP-
completeness [Lev], but the proof has never been published.4 Although we were unable to find
in the literature an explicit construction for either Lemma 3.2 or, equivalently, of Theorem 2.2,
we do not claim this result as ours, since it became a folklore decades ago. We include the proof
for completeness, and since we need an explicit construction. An alternative proof is outlined in
Subsection 7.2 below.

Let us mention that using [Oll], the number of tiles in Theorem 2.2 can be reduced to 11, but
this reduction has no effect on the number of tiles in the main theorems. Indeed, Theorem 2.2 is
an immediate corollary of Lemma 3.2, which is the one needed in the proof of main theorems 1.1
and 1.2.

7.2. Our proof of Lemma 3.2 is completely elementary and yields explicit bounds (see also Sub-
section 7.1). Let us sketch an alternate proof of the lemma, using a non-deterministic universal
Turing machine (UTM). It was suggested to us by Cris Moore.

Fix some non-deterministic universal Turing machine M. Given two finite tape configurations
and a natural number t (in unary), it is NP-complete to decide whether M transforms the first
tape configuration to the second with t steps of computation. Fix a finite set W of Wang tiles that
simulate the space-time computation diagram of M (see e.g. [LeP, §7]). Encode the given tape
configurations as the top and bottom boundaries of a rectangular region with height t. This region
is tileable by W if and only if M transforms the first tape configuration to the second in precisely t

steps. The details are straightforward.
Note that this method also proves the counting result. Indeed, one can devise a UTM so that

there is a bijective correspondence between the accepting paths of the UTM and of the Turing
machine it is simulating.

The proof of Lemma 3.2 constructs a set of 23 generalized Wang tiles (133 ordinary Wang tiles).
However, it is possible to decrease these numbers by elementary means. After this paper was
written, a modified construction by Günter Rote and the second author improves the number of
generalized Wang tiles in Lemma 3.2 to 15, which amounts to 35 ordinary Wang tiles. With other
technical improvements this does reduce the 106 bound in Theorem 1.1 to a much friendlier 117.
The details are given in [Yang].

4Leonid Levin, personal communication.
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We do not know if this approach leads to improvements in the number of Wang tiles in the
lemma, as this would depend on the smallest UTM. Given an m-state n-symbol Turing machine
with k instructions, the standard construction of Wang tiles to simulate such a Turing machine
yields more than nm + n + k tiles. By way of comparison, among the smallest known UTMs, this
minimum is achieved by Rogozhin’s 4-state 6-symbol machine with 22 instructions, which already
yields more than 52 tiles [Rog] (see also [NW]). Unless substantial progress is made in finding small
UTMs, our elementary proof still gives better bounds.

7.3. In the tiling literature, the original theoretical emphasis was on tileability of the plane, the
decidability and aperiodicity. The problem was often stated in the equivalent language of Wang
tiles [Ber, Rob2, Wang]. Unfortunately, there does not seem to be any standard treatment of the
finite Wang tiling problems. Although some equivalences in the Lemma 3.1 are routine, such as
the reduction in Figure 2, others seem to be new. We present full proofs for completeness.

7.4. Historically, finite tilings were a backwater of the tiling theory, with coloring arguments being
the only real tool [Gol1]. On a negative (complexity) side, originally, the tileability problem was
studied for general regions, where the tiles were part of the input. The NP-completeness of this
most general problem is given in [GJ, §GP13]. When the set of tiles is fixed, NP-completeness was
shown for general regions and various fixed small sets of tiles (see [MR] and [BNRR] building on
the earlier unpublished work by Robson).

On the positive side, papers of Thurston [Thu] and Conway & Lagarias [CL] introduced the
height function and the tiling group interrelated approaches. The key underlying idea is the use of
combinatorial group theory applied to the boundary word of the simply connected regions, so the
tilings become Van Kampen diagrams of the corresponding tiling group. This approach allowed nu-
merous applications to perfect matchings [Cha], tile invariants [Korn, MP, Reid1], tileability [She],
various local move connectivity results [KP, Rem1], classical geometric problems [Ken1], applica-
tions to colorings and mixing time [LRS], etc. More relevant to this paper, the breakthrough result
by C. and R. Kenyon [KK] proved that tileability with bars of simply connected (s.c.) regions can
be decided in polynomial time. This result was further extended to all pairs of rectangles by Rémila
in [Rem2], and by Korn [Korn] to an infinite family of generalized dominoes. Our Main Theorem
puts an end to the hopes that these results can be extended to larger sets of rectangles.

Note also that having s.c. regions gives a speed-up for polynomial problems. For example,
domino tileability is a special case of perfect matching, solvable in quadratic time on all planar
bipartite graphs [LP]. However, Thurston’s algorithm is linear time (in the area), for all s.c. regions
(see [Cha, Thu]).

7.5. We conjecture that in the Main Theorem (Theorem 1.1), the number of rectangles can be
reduced down to 3, thus matching the lower bound (Rémila’s tileability algorithm for the case of
two rectangles). As a minor supporting evidence in favor of this conjecture, let us mention that the
proofs in [KK, Rem2] are crucially based on local move connectivity, which fails for three general
rectangles. In the absence of algebraic methods, there seem to be no other (positive) approach to
tileability.

7.6. This result of Main Theorem can be contrasted with a large body of positive results on tiling
rectangular regions with a fixed set of rectangles.

Theorem 7.1 (“Tiling rectangles with rectangles” Theorem [LMP]) For every finite set R of
rectangular tiles, the tileability problem of an [M ×N ] rectangle can be decided in O(log M +log N)
time.

Note that Theorem 7.1 has linear time complexity for the rectangular regions written in binary.
This result is based on the pioneer results by Barnes [Bar1, Bar2] applying commutative algebra,
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the finite basis theorem [DK] (see also [Reid2]), and the transfer matrix method (see e.g. [Sta,
Ch. 4]).

It seems, tilings of rectangles have additional structure, which general regions do not have. See
e.g. [BSST, C+, Rob1] for assorted results on the subject. On the other hand, when the tiles are
part of the input, deciding tileability can be NP-hard, and the proof can be used to show that
counting tilings is #P-hard. Note that the results in [LMP] only discuss tileability, not counting.
It would be interesting to obtain general results on the local move connectivity and hardness of
counting results for tilings of rectangular regions with rectangles.

7.7. Although counting perfect matchings in general graphs is #P-complete, for the grid graphs
a Pfaffian formula gives a count for the number of domino tilings for any (not necessarily simply
connected) region; this formula can be applied in polynomial time [LP] (see also [Ken2]). In a
different direction, Moore and Robson [MR] conjecture that already for two bars, the problem is
#P-complete for general regions. They note that the corresponding reductions in [BNRR, MR] are
not parsimonious. Thus, until now, the #P-completeness was open for any finite set of rectangular
tiles, even for general regions.

We make a stronger conjecture that for every tileset T of two bars [1 × k] and [ℓ × 1], where
k, ℓ ≥ 2, (k, ℓ) 6= (2, 2), the counting of tilings by T of simply connected regions is #P-complete.
In particular, the number 106 in Theorem 1.2 can be decreased to 2. There is no direct evidence
in favor of this, except that the general combinatorial counting problems tend to be #P-complete
unless there is a special algebraic formula counting them. Furthermore, when it comes to tile
counting, there seem to be no direct benefit of simple connectivity of the regions, so such result is
likely to be equally hard as for general regions. We refer to [Jer] for the introduction and references.

7.8. By a simple modification of the Wang tiles, we can also get a parsimonious reduction
from SAT. For that, first, we can introduce wire splitters and the NOT gate. By doing so, we
remove the “cubic” and “monotone” constraints, respectively. These would play the same role as
crossover tiles, and require a separate color on the boundary for each. This would also increase the
set of tiles by introducing new variants for the V and L tiles as well. We omit the details.

We can then introduce the AND gate in a similar fashion, again with a new control color on the
top and new versions of the V , C and L tiles. This gives the embedding of SAT. This reduction is
parsimonious in the same way as the reduction in Theorem 1.2, which implies that the associated
counting problem is also #P-complete.

Let us compute the total number of rectangles necessary for this construction. First, this would
increase the number of Wang tiles from 23 to no more than 23 · 8. Then, the same argument as
above gives the 108 bound in the number of rectangular tiles. We omit the (easy) calculation and
details.

7.9. The reductions in this paper can be used to prove uniqueness results on tileability with
rectangles, i.e. whether there exists a unique tiling of a region with a given set of rectangular tiles.
In [BNRR], the problem was completely resolved in the case of two bars. An even simpler solution
follows from [KK] in this case. Since all tilings are local move connected, taking the “minimal tiling”
constructed by the algorithm in [KK] and trying all potential moves gives an easy polynomial time
test. More generally, Rémila [Rem2] showed that for two general rectangles one can go from one
to another with certain non-local moves which are easy to describe. Again, since he produces the
“minimal tiling,” his algorithm can be used to decide unique tileability with two rectangles.

Now, our approach, via reduction from the general SAT problem (see above) shows that for
a certain finite set of rectangles, uniqueness of tilings of a simply connected region is as hard as
UNIQUE SAT, which is co-NP-hard and has been extensively studied [BG, VV]. This seems to
be the first result of this type.
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7.10. Although Theorem 7.1 extends directly to bricks in higher dimensions [LMP], this is an
exception rather than the rule. In fact, we recently showed that almost no other positive tileability
results extend to higher dimensions, even Thurston’s algorithm mentioned above (see [PY]).
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