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Multiprocessors have become the main architecture trend in modern systems due to the superior perfor-
mance; nevertheless, the power consumption remains a critical challenge. Global power management (GPM)
aims at dynamically finding the power state combination that satisfies the power budget constraint while
maximizing the overall performance (or vice versa). Due to the increasing number of cores in a multiprocessor
system, the scalability of GPM policies has become critical when searching satisfactory state combinations
within acceptable time. This article proposes a highly scalable policy based on combinatorial optimization
with theoretical proofs, whereas previous works take exhaustive search or heuristic methods. The proposed
policy first applies an optimum algorithm to construct a state combination table in pseudo–polynomial time
using dynamic programming. Then, the state combination is assigned to cores with minimum transition
cost in linear time by mapping to the network flow problem. Simulation results show that the proposed
policy achieves better system performance for any given power budget when compared to the state-of-the-art
heuristic. Furthermore, the proposed policy demonstrates its prominent scalability with 125 times faster
policy runtime for 512 cores.

Categories and Subject Descriptors: D.4.7 [Operating Systems]: Organization and Design—Real-Time
Systems and Embedded Systems; J.6 [Computer-Aided Engineering]: Computer-Aided Design (CAD)

General Terms: Algorithms, Design, Management, Performance

Additional Key Words and Phrases: Combinatorial optimization, DVFS, multiprocessor systems

ACM Reference Format:
Gung-Yu Pan, Jed Yang, Jing-Yang Jou, and Bo-Cheng Charles Lai. 2015. Scalable global power management
policy based on combinatorial optimization for multiprocessors. ACM Trans. Embed. Comput. Syst. 14, 4,
Article 70 (December 2015), 24 pages.
DOI: http://dx.doi.org/10.1145/2811404

1. INTRODUCTION

Multiprocessor systems have become mainstream in both general-purpose and em-
bedded computers to break the ILP wall; however, power consumption has remained
the bottleneck for digital designs over the past decade [Pedram 1996]. Among many
low-power techniques, system-level power management is widely applied, including
dynamic voltage and frequency scaling (DVFS) [Jha 2001; Yao et al. 1995], dynamic
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power management (DPM) [Benini et al. 2000], cache resizing [Wang et al. 2011;
Ma et al. 2011b], and task migration [Ge et al. 2010]. In this article, we focus on DVFS,
where the supply voltage and clock frequency are adjusted dynamically to reduce power.

Many modern systems support DVFS, including Enhanced Intel SpeedStep Tech-
nology (EIST) [Intel 2013], AMD PowerNow! [AMD 2013], ARM Intelligent Energy
Controller (IEC) [ARM 2005], and MIPS Cluster Power Controller (CPC) [Knoth 2009].
These technologies provide the power management interfaces for specific systems so
that power managers can be implemented in software.

System-level power management is abstracted as a power state decision among sev-
eral given modes, referring to the p-state (performance level) defined in the Advanced
Configuration and Power Interface (ACPI) [ACPI 2011] for DVFS. Architectural char-
acteristics can be measured beforehand, including the supply voltage and the operating
frequency of each state, and the transition overhead induced by mode switching.

In designing power managers for multiprocessor systems, the scalability issues need
to be extraordinarily considered due to the increasing number of cores within a system
[Held et al. 2006]. Previous works show that global fine-grained power control can
achieve more power saving [Sharkey et al. 2007; Kim et al. 2008], but the manage-
ment overhead increases accordingly. Power management overhead includes voltage
(frequency) switching delay and the time to run the policy itself; the former is linearly
proportional to the difference in voltage [Isci et al. 2006], and the latter is proportional
to the number of cores [Winter et al. 2010]. As the supply voltage scales down, the
switching delay is shrinking (19.5μs in Isci et al. [2006] and 10μs in Ma et al. [2011b]),
whereas the policy runtime (longer than 100μs for 256 cores in Winter et al. [2010])
now dominates the power management overhead because the number of cores scales
up. Therefore, designing low-complexity (in terms of total cores) policies is critical in
per-core global power management (GPM); our goal is to provide scalable algorithms
while the optimality of the policy is guaranteed by mathematical proofs.

1.1. Global Power Management

Specifically, the GPM problem for multiprocessors is formulated in Isci et al. [2006]:
given per-core available DVFS, determine the power state of each core to maximize
throughput under the power budget constraint. Isci et al. [2006] assume that the
power manager is separated from thread scheduling, and the cores are filled with mul-
tiprogrammed contexts and kept busy. They propose a policy called MaxBIPS to solve
the problem; cubic and linear scaling with respect to the supply voltage are adopted to
characterize the dynamic power and operating frequency, respectively. MaxBIPS tries
to maximize the summation of the frequency of each core while maintaining the sum-
mation of the power of each core below the budget. It also takes a priority in the order
of the CPU boundedness of the contexts. Their experimental results show that the esti-
mation metrics are accurate in both throughput (2% to 4% error rate) and power (0.1%
to 0.3% error rate). This model has demonstrated its accuracy, and the performance
of MaxBIPS is shown better than other policies [Isci et al. 2006]; therefore, the same
model is widely used by other following works.

Since MaxBIPS exhaustively searches the power state combinations, several heuris-
tics are proposed to enhance scalability. In Teodorescu and Torrellas [2008], linear
approximation between power and performance is used, and the combination is de-
termined by the linear programming algorithm LinOpt. Greedy neighboring search is
used for chip multiprocessors in Meng et al. [2008], and the steepest drop (SD) algo-
rithm for many-core architectures considering process variation is proposed in Winter
et al. [2010]. Winter et al. [2010] also show that thread scheduling and GPM can be
considered separately. In Ma et al. [2011b], the problem is solved by simplified linear
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Table I. Comparisons of GPM Policies

Policy
Description Year Time Complexity Optimal Transition Cost
MaxBIPS [Isci et al. 2006] 2006 O(nmn) Yes
Exhaustive search
LinOpt [Teodorescu and Torrellas 2008] 2008 O(n4) No
Linear programming with linear approximation
Greedy [Meng et al. 2008] 2008 O(mn) No
Greedy search for neighboring state
Steepest drop [Winter et al. 2010] 2010 O(mn lg n) No
Greedy search for neighboring state
DPPC [Ma et al. 2011b] 2011 O(n3.5) No
Linear programming with empirical models
Ours (general) 2013 O(m3 lg (n/m)) Yes
Combinatorial optimizations
Ours (special) 2013 O(lg(mn) + m) Yes
Combinatorial optimizations

programming with empirical models. All of these policies targeting the GPM problem
are compared in the following section.

1.2. Our Contributions

Like previous works, we inherit the same problem formulation of GPM for homoge-
neous multiprocessor systems [Isci et al. 2006] and focus on designing the policy for
power state decisions. We make two main contributions in this article. First, our policy
is highly scalable for multiprocessor systems. Second, the combinatorial algorithms be-
hind the policy are optimum. Both scalability and optimality are proved theoretically
and verified by cycle-accurate simulations using commercial benchmarks [Henning
2006].

The comparisons of different GPM policies are listed in Table I. To provide fair
comparisons, we remove the optimization considerations other than throughput maxi-
mization with power budget (e.g., process variation in Teodorescu and Torrellas [2008]
and [Winter et al. 2010]) and the power management techniques other than per-core
DVFS (e.g., cache resizing in Meng et al. [2008] and Ma et al. [2011b]). Besides, the
third column is the time complexity of online policies, whereas MaxBIPS and our pol-
icy prebuild some tables offline. Since the number of performance levels m is limited
according to ACPI [2011] while the number of cores n may scale to a large number, the
policy scalability is dominated by n. In short, our policy achieves the same optimality
as MaxBIPS and the best scalability among all policies. Furthermore, the transition
costs are taken into consideration in our policy as MaxBIPS. In addition to the general
cases, our policy is able to further speed up in some common conditions; the details are
discussed in later sections.

In this article, we provide a table-lookup method to obtain the state combination
having maximum performance under the given power budget. Based on combinatorial
optimization (CO), we propose an optimum offline algorithm for table construction in
pseudo–polynomial time. We then provide another linear-time (in the number of cores)
algorithm to assign the next state for each core with minimum transition cost. Sim-
ulation results show that the proposed algorithms provide better power-performance
trade-off than the previous state-of-the-art method. Moreover, our policy achieves up
to 125 times speedup for 512 cores.

The remainder of the article is organized as follows. Section 2 illustrates the
block diagram and formally defines the problems. Sections 3 and 4 provide the pro-
posed algorithms for the problems. Section 5 shows the simulation results, including
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Fig. 1. The system block diagram. The operating system decides the power budget according to the measured
physical information. Then the global power manager determines the target power states without exceeding
the budget.

performance and runtime comparisons. Finally, Section 6 gives the survey on related
works, and Section 7 summarizes the article.

2. PROBLEM FORMULATION

2.1. System Model

We follow the closed-loop system model in Isci et al. [2006], as depicted in Figure 1. The
GPM layer is in between the operating system and the physical cores. The power states
of all of the cores are managed by the global power manager, which can be implemented
as system software, firmware, or hardware.

For each power management epoch, the target states of cores are determined by the
global power manager according to the power budget and the current states. The state
decision process is separated into two phases: first we determine the state combination
and then assign the states to the cores.

The workload characteristics are unknown in advanced, and the physical information
(power/performance) measured by monitors is sent back to the operating system. The
operating system takes the measured actual power and the current power states to
estimate the future power consumption. Note that the power budget can be determined
by controller(s) or user-defined value(s) where the power manager is independent of
the value(s); we take the simple controller in Isci et al. [2006] to generate the power
budget value for simulation in Section 5.

2.2. Notations

The notations of this article are listed in Table II, with the first sector for the archi-
tecture characteristics, the second sector for the constraint(s) made by the operating
system, and the last sector for the algorithms behind the global power manager. These
notations are used for analysis, whereas the real values of the architecture character-
istics (m, n, f, p, C) are obtained from commercial systems for simulation in Section 5.

There are n cores in the homogeneous multiprocessor system and m DVFS states in
each core. Fine-grained power control is available, so each core can be in any state.

The power states are numbered 0 to m− 1, with corresponding operating frequency
f = ( f0, . . . , fm−1), f ∈ Zm

+ and power consumption p = (p0, . . . , pm−1), p ∈ Rm
+ ; fi and

pi denote the frequency and the power of the ith state, respectively, while the supply
voltage is implicitly defined. Without loss of generality, we assume fi ≥ f j, pi ≥ pj
for 0 ≤ i < j < m. Note that f is a positive integer vector representing the relative
performance levels; this is common in system design, such as the ARM IEC [ARM 2005].
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Table II. Notations

Notation Type Meaning
m Z+ Number of power states
n Z+ Number of cores
f Zm+ Operating frequency
p Rm+ Power consumption
C Rm×m

+ Transition cost
P R+ Aggregate power budget
F Z+ (Transformed) aggregate frequency constraint
w Zm+ Current state combination
x Zm+ Next state combination
Y Zm×m

+ Transition combination

The positive real vector p represents the relative power consumption of different states
as well.

The transition cost is denoted by an m × m matrix C, where cij ∈ R+ is the state
switching cost from the ith state to the jth state; it can be defined as power, delay, or
any mixture thereof. In the simulation section, we use the transition delay as the cost,
which is adapted from Isci et al. [2006].

The power budget P is determined by the operating system within the range npm−1 ≤
P ≤ np0. Note that P is also a relative value as the power consumption vector p.
The aggregate power (summation of power over all cores) should not exceed P. The
aggregate frequency constraint F is only an intermediate value of our algorithm in
Section 3.

For homogeneous systems, the characteristics of power states are the same for all
the cores. In other words, the combination instead of the permutation of core states is
important in this article. Therefore, the dimensions of w, x and Y are in terms of the
number of states m instead of the number of cores n. The three variables are formally
defined in the following sections.

2.3. Statement of Problems

Based on the preceding system model, we focus on the design of algorithms for the two
phases for GPM.

The former phase is called State Combination: given the system characteristics
(m, n, f, p) and aggregate power budget P, determine the state combination such that
the steady-state performance is maximized. The state combination problem is formally
formulated as mathematical equations in Section 3.

The latter phase is called State Assignment: given the system characteristics
(m, n, C), the current states of cores, and the state combination, assign the target
states to the cores such that the transition cost is minimized. The state assignment
problem is formally formulated as mathematical equations in Section 4.

Note that the transition delay of DVFS (in the order of 10μs in Isci et al. [2006]) is
much shorter than the period of power management (0.5ms in Isci et al. [2006] and
10ms in Winter et al. [2010]); therefore, we can optimize the steady-state performance
first and then minimize the transition cost.

3. STATE COMBINATION

In this section, the State Combination problem is formulated in linear equation and
then solved using CO techniques through several equivalent transformations. Note
that the power budget P is the only dynamic input while the system characteristics
(m, n, f, p) are statically given. Thus, we can speed up the runtime by constructing a

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 70, Publication date: December 2015.



70:6 G.-Y. Pan et al.

state combination table offline with the aggregate power as index and then look up the
table for the state combination online. The table construction process can be further
accelerated for specific power modes.

3.1. Problem Transformations

According to the system model of GPM [Isci et al. 2006], performance maximization
is done by maximizing the aggregate frequency. The summation of the operating fre-
quency over all cores is maximized while the summation of the power over all cores is
below the budget.

Since we focus on homogeneous systems, we are only interested in the aggregate
number of cores in each state instead of the separate state of each core. Therefore, we
define an m-dimensional vector x = (x0, . . . , xm−1) for the next state combination to be
determined. In other words, xi is the number of cores that should be in the ith state.
Then the State Combination problem is formulated as

maximize
m−1∑
i=0

fixi (1)

subject to
m−1∑
i=0

pixi ≤ P (2)

m−1∑
i=0

xi = n. (3)

The performance maximization is expressed in (1), and the aggregate power constraint
is stated in (2) (3). Note that (3) is a necessary constraint to ensure that the summation
of the cores in each state is exactly the total number of cores; otherwise, the solutions
may not be valid.

The preceding problem formulation is NP-hard as explained in Meng et al. [2008],
so solving it using exhaustive search is not scalable. Nevertheless, we can reduce the
time complexity to pseudopolynomial by reformulating the State Combination problem
in another direction: given the system characteristics (m, n, f, p) and the aggregate
frequency constraint F, determine the state combination such that the aggregate power
consumption is minimized, where the aggregate frequency constraint is within the
range nfm−1 ≤ F ≤ nf0. This problem is formulated as

minimize
m−1∑
i=0

pixi (4)

subject to
m−1∑
i=0

fixi ≥ F (5)

m−1∑
i=0

xi = n. (6)

The formulation is very similar, but the constraint and objective function are
swapped. Because the optimal aggregate power is a nondecreasing function of the
optimal aggregate frequency (and vice versa), the entries in the look-up table remain
in the same order regardless of the index in P or F. In other words, suppose that x̌ is
an optimum solution in (4) through (6) with aggregate frequency F̌ ≥ F and minimum
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aggregate power P̌; we cannot find another solution x̌′ with aggregate frequency
F̌ ′ > F̌ ≥ F but aggregate power P̌ ′ < P̌ for (1) through (3); otherwise, the solution
x̌ is not optimum for (4) through (6). Therefore, we can take advantage of the integer
character of f and reduce the time complexity using some combinatorial algorithms.
We will explain the method to look up the table using P (without F) in the third section.

Note that the problem formulated in (4) through (6) is different from the bounded
knapsack problem (BKP), because the number of items is limited by an aggregate
amount (

∑m−1
i=0 xi = n) instead of a distinct amount for each item (xi ≤ ci for i =

0, 1, . . . , m − 1, where c is an m-dimensional vector). Therefore, this problem cannot
be solved using existing algorithms for BKP directly. We need to make some transfor-
mations to this problem first and then solve it with other existing algorithms.

Definition 3.1.

f̂i = f0 − fi, p̂i = p0 − pi for i = 0, 1, . . . , m− 1 (7)

F̂ = n · f0 − F (8)

We can deem f̂i and p̂i as the frequency degradation and the power saving for
the ith state, respectively, and F̂ as the total frequency degradation constraint. By
substituting (7) (8) into (4) through (6), we can obtain the maximization problem with
inverted inequalities:

maximize
m−1∑
i=0

p̂ixi (9)

subject to
m−1∑
i=0

f̂i xi ≤ F̂ (10)

m−1∑
i=0

xi = n. (11)

Then we define the offset of frequency and power ( f̄ , p̄), and create the shifted
frequency degradation f ′

i , the shifted power saving p′
i, and the shifted total frequency

degradation F ′.

Definition 3.2.

f̄ = n · f0 + 1, p̄ = n · p0, (12)
f ′
i = f̂i + f̄ , p′

i = p̂i + p̄, for i = 0, 1, . . . , m− 1 (13)

F ′ = F̂ + n · f̄ (14)

Since f̄ and p̄ are constants, substituting p̂i with p′
i in (9) does not change

the objective function, and adding n f̄ to the both sides of inequality (10) yields∑m−1
i=0 f̂i xi + n f̄ = ∑m−1

i=0 f̂i xi + ∑m−1
i=0 f̄ xi = ∑m−1

i=0 f ′
i xi ≤ F̂ + n f̄ = F ′, which does not

change it. Then we can rewrite the problem as

maximize
m−1∑
i=0

p′
ixi (15)

subject to
m−1∑
i=0

f ′
i xi ≤ F ′. (16)
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Note that (11) is removed, so the preceding problem (15) (16) can be solved using
existing algorithms. The remaining problem is the validity proof of the second problem
transformation where (11) is embedded in (15) (16). In other words, suppose that the
solution to the preceding problem (15) (16) is x̌i; we need to prove that the summation
of x̌i over the m different states is exactly equal to n.

LEMMA 3.3.
∑m−1

i=0 x̌i ≤ n.

PROOF. Assume that
∑m−1

i=0 x̌i ≥ n + 1, then we substitute (12) through (14) in (16)
to obtain F̂ + n2 f0 + n ≥ ∑m−1

i=0 x̌i( f̂i + nf0 + 1) ≥ ∑m−1
i=0 x̌i(nf0 + 1) ≥ (n + 1)(nf0 + 1) =

n2 f0 + n + nf0 + 1. After simplification, we derive F̂ ≥ nf0 + 1, which contradicts the
fact that F̂ ≤ nf0. As a result,

∑m−1
i=0 x̌i ≤ n is proved by contradiction.

LEMMA 3.4.
∑m−1

i=0 x̌i ≥ n.

PROOF. Suppose that we find an optimal solution with
∑m−1

i=0 x̌i ≤ n − 1 , then we
substitute (12) and (13) in (15) to obtain

∑m−1
i=0 x̌i( p̂i + np0) = np0

∑m−1
i=0 x̌i + ∑m−1

i=0 x̌i p̂i ≤
n(n − 1)p0 + (n − 1)p0 < n2 p0 = np̄. Note that the right-hand side is the minimum
value for (15) by setting x0 = n, xi = 0 for i = 1, 2, . . . , m− 1, which is feasible in (16) as
f ′
0n = f̄ n ≤ F ′. It contradicts the optimal assumption because the summation for this

setting is n; because any solution with
∑m−1

i=0 x̌i ≤ n−1 is not optimal, optimal solutions
must satisfy

∑m−1
i=0 x̌i ≥ n.

THEOREM 3.5. The solution of the transformed problem (15) (16) is also a solution to
the state combination problem (9) through (11).

PROOF. From Lemmas 1 and 2, any feasible solution satisfies
∑m−1

i=0 x̌i ≤ n, and any
optimal solution satisfies

∑m−1
i=0 x̌i ≥ n; thus, we can obtain (11), which completes the

original problem formulation.

3.2. Table Construction

The preceding formulation (15) (16) is exactly the unbounded knapsack problem (UKP).
With integer coefficients, UKP can be solved using dynamic programming. Define P ′

f̃
as the maximum total power saving subject to the constraint that the total frequency
degradation is at most f̃ . We can establish the recursive relation

P ′
f̃ = max

(
P ′

f̃ −1, max
f ′
i ≤ f̃

(
P ′

f̃ − f ′
i
+ p′

i

))
. (17)

To have the maximum power saving for each index f̃ , one of the states is picked and
the corresponding p′

i is added, or P ′
f̃ = P ′

f̃ −1 if no state is picked. Starting with P ′
0 = 0,

the solution is obtained by increasing the index until F ′.
The overall algorithm for table construction is listed in Algorithm 1. Equivalent

problem transformations are done in lines 1 through 6. Then the table is constructed
by scanning from 0 to max (F ′) using dynamic programming in lines 7 through 11. The
best state combination, as well as the transformed aggregate power and frequency,
are recorded in the table during each step. After constructing the table, we only need
to keep the last n( f0 − fm−1) + 1 entries because nfm−1 ≤ F ≤ nf0. Besides, those
entries having the same state combination can be merged (since redundant entries are
created during dynamic programming). At last, we need to restore the actual values
of aggregate power and frequency by subtracting the aggregate offset np̄ = n2 p0 and
n f̄ = n2 f0 + n, respectively.
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Table III. General State Combination Table

F P x
nf0 np0 (n, 0, . . . , 0)

. . .

. . .
(n − 1) f0 + f1 (n − 1)p0 + p1 (n − 1, 1, 0, . . . , 0)

. . .

. . .

. . .
fm−2 + (n − 1) fm−1 pm−2 + (n − 1)pm−1 (0, . . . , 1, n − 1)

. . .

. . .
nfm−1 npm−1 (0, . . . , 0, n)

ALGORITHM 1: Table-Construction
1 f̄ ← nf0 + 1;
2 p̄ ← np0;
3 for i ← 0 to m− 1 do
4 f ′

i ← f0 − fi + f̄ ;
5 p′

i ← p0 − pi + p̄;
6 end
7 P ′

0 ← 0;
8 for f̃ ← 1 to n2 f0 + n + nf0 − nfm−1 do
9 P ′

f̃ = max
(
P ′

f̃ −1, max f ′
i ≤ f̃

(
P ′

f̃ − f ′
i
+ p′

i

))
;

10 record best state combination in the table;
11 end
12 truncate the table and restore P from P ′;

The most time-consuming part is the maximization operation in line 9, which com-
pares m times. The loop in lines 8 through 11 executes at most F ′ = F̂ + n f̄ =
n f̂0 − F + n(nf0 + 1) ≤ n( f0 − fi + nf0 + 1) = O(n2 f0) times. Therefore, the time
complexity is O(mF ′) = O(mn2 f0) for offline table construction.

3.3. Table Lookup

An example state combination table is shown in Table III. Since the aggregate power
is monotonically increasing as the aggregate frequency from the bottom of the table,
we can binary search through the table for the maximum aggregate frequency without
exceeding the budget and obtain the optimum state combination.

The table has at most n( f0 − fm−1)+1 rows. Using binary search, the time complexity
is O(lg(n( f0 − fm−1) + 1)) = O(lg(nf0)) for online table lookup.

Due to the observation that the relative performance levels are represented as fixed
point in real systems, we can transform and solve the NP-hard problem in pseudo–
polynomial time. Note that we cannot solve the original problem with power budget
directly using dynamic programming unless we quantize p into an integer vector.

3.4. Arithmetic Sequence Condition

The preceding sections discuss the algorithm that solves the general state combina-
tion problem. In some systems, the given performance levels usually form arithmetic
sequences [Meng et al. 2008; Winter et al. 2010; Ma et al. 2011a; Sartori and Kumar
2009]. Under the cases, the optimization algorithm can be further simplified.

The specific situation is called the Arithmetic Sequence Condition, where the differ-
ences between neighboring performance levels are the same. Besides, the dependency
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between power and frequency is superlinear. Then the relationship between neighbor-
ing states is mathematically formulated as follows:{

fi − fi+1 = fi+1 − fi+2
pi − pi+1 ≥ pi+1 − pi+2

for 0 ≤ i < m− 2. (18)

By the transitive law, it is rewritten in general form:{
fi − fi+1 = f j − f j+1
pi − pi+1 ≥ pj − pj+1

for 0 ≤ i < j < m− 2. (19)

Under this condition, we find a useful property to simplify the general state combi-
nation problem and reduce both table construction and lookup time.

Definition 3.6. The nonzero-interval of a state combination x is the maximum dis-
tance between any two nonzero columns of x. It is denoted as λ(x) = max0≤l≤r<m (r − l),
xi = 0 for i < l or i > r.

LEMMA 3.7. For any state combination x̌ with nonzero-interval λ(x̌) > 1, corresponding
aggregate frequency F̌, and aggregate power P̌, we can find another state combination
x̌′ such that its nonzero-interval is λ(x̌′) ≤ λ(x̌) − 1, with the same aggregate frequency
F̌ ′ = F̌ and nonincreasing aggregate power P̌ ′ ≤ P̌ under the Arithmetic Sequence
Condition.

PROOF. Let x̌l and x̌r denote the left-most and right-most nonzero column of a state
combination x̌, respectively. Let ď = min (x̌l, x̌r); we can create x̌′ by setting x̌′

l = x̌l − ď,
x̌′

l+1 = x̌l+1+ď, x̌′
r = x̌r−ď, x̌′

r−1 = x̌r−1+ď, and x̌′
i = x̌i for the rest columns l+1 < i < r−1.

At least one of x̌′
l, and x̌′

r becomes zero and the nonzero-interval decreases by one or two.
Note that F̌ ′ = F̌−ď · ( f̌l+ f̌r− f̌l+1− f̌r−1) = F̌ ′ and P̌ ′ = P̌−ď · ( p̌l+ p̌r− p̌l+1− p̌r−1) ≤ P̌
because of the Arithmetic Sequence Condition (19).

When the state combination x̌ is optimum, then the created x̌′ is also optimum with
x̌′ has F̌ ′ = F̌ and P̌ ′ = P̌; they are referred to as an equivalence of each other.

Using the preceding property, we can shrink the solution space by finding the opti-
mum congregate state combination x under any given F.

Definition 3.8. A state combination x is congregate if and only if λ(x) ≤ 1.

THEOREM 3.9. Under the Arithmetic Sequence Condition, there exists one optimum
congregate state combination x for any given F.

PROOF. We can prove the theorem by finding a congregate equivalence for any optimal
solution x̌ with aggregate frequency F̌ and aggregate power P̌. If λ(x̌) ≤ 1, then we
are done. Assume that we can find a congregate equivalence of any state combination
x with λ(x) = k, then we can find a congregate equivalence of any state combination x
with λ(x) = k + 1 according to Lemma 3.7 and the optimum assumption of x̌. Then the
theorem is proved by mathematical induction.

Using the preceding theorem, we can add the congregate constraint to restrict the
solution space to speed up the table construction process; now we are able to find the
congregate state combination only. Starting from (n, 0, . . . , 0), the left-most nonzero
column decrements and its right column increments. Due to the Arithmetic Sequence
Condition, all possible state combinations can be reached by this method.

An example congregate state combination table is shown in Table IV. The table size is
reduced to (m− 1)n entries, the offline table construction time is reduced to O(mn), and
the online table lookup time is reduced to O(lg(mn)). Note that the greedy neighboring
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Table IV. Congregate State Combination Table

F P x
nf0 np0 (n, 0, . . . , 0)

(n − 1) f0 + f1 (n − 1)p0 + p1 (n − 1, 1, 0, . . . , 0)
(n − 2) f0 + 2 f1 (n − 2)p0 + 2p1 (n − 2, 2, 0, . . . , 0)

. . .

. . .
f0 + (n − 1) f1 p0 + (n − 1)p1 (1, n − 1, 0, . . . , 0)

nf1 np1 (0, n, 0, . . . , 0)
(n − 1) f1 + f2 (n − 1)p1 + p2 (0, n − 1, 1, 0, . . . , 0)

. . .

. . .

. . .
2 fm−2 + (n − 2) fm−1 2pm−2 + (n − 2)pm−1 (0, . . . , 2, n − 2)
fm−2 + (n − 1) fm−1 pm−2 + (n − 1)pm−1 (0, . . . , 1, n − 1)

nfm−1 npm−1 (0, . . . , 0, n)

Fig. 2. Model state assignment as the minimum weight perfect bipartite matching problem. The complexity
is proportional to the number of cores.

search algorithm [Meng et al. 2008] and SD [Winter et al. 2010] result in the same
solution under this special condition.

4. STATE ASSIGNMENT

The State Combination process explained in the previous section determines the num-
ber of cores that should be put in each state, and the State Assignment process in
this section assigns each core to its new state; different assignments result in different
transition costs, which should be minimized.

4.1. Problem Mapping

The State Assignment process can be mapped to several existing graph problems. For
example, it turns into the minimum weight perfect bipartite matching problem with
each vertex representing a core and the edge weight being the transition cost, as shown
in Figure 2 with n = 8, for example. It can be solved by the Hungarian algorithm [Kuhn
2010] in O(n3), but the scalability becomes a serious issue for an online policy.

Since the number of states m is usually limited while n may scale to a large number,
the main factor of scalability and complexity is n. For example, at most 16 performance
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levels can be specified in ACPI [2011], but multiprocessor systems may contain more
than a hundred cores [Held et al. 2006]. Therefore, the online algorithm should reduce
the order of n in the complexity.

We propose another mapping that reduces the complexity for homogeneous archi-
tectures. Similar to the next state x, we define the aggregate current state vector
w = (w0, . . . , wm−1), w ∈ Zm

+ , where wi is the number of cores currently in the ith state.
Note that w and x satisfy

∑m−1
i=0 wi = ∑m−1

j=0 xj = n inherently. We also define the ag-
gregate transitions as an m× m matrix Y , where yij ∈ Z+ denotes the number of cores
that are switched from the ith state to the jth state; yij is bounded by both wi and
xj . Moreover,

∑m−1
i=0

∑m−1
j=0 cij yij is the total transition cost, which should be minimized.

Then the problem is formulated as

minimize
m−1∑
i=0

m−1∑
j=0

cij yij (20)

subject to
m−1∑
j=0

yij = wi for i = 0, 1, . . . , m− 1 (21)

m−1∑
i=0

yij = xj for j = 0, 1, . . . , m− 1. (22)

We map the problem to the minimum cost maximum flow problem on a directed
acyclic graph G = (U ∪ V ∪ {s, t}, EW ∪ EX ∪ EY ). The vertex sets U = {u0, u1, . . . um−1}
and V = {v0, v1, . . . , vm−1} correspond to the current and the target power states, respec-
tively, with additional source s and sink t. The four sets of vertexes are connected by
the edge sets EW = {(s, u) : u ∈ U }, EX = {(v, t) : v ∈ V }, and EY = {(u, v) : u ∈ U, v ∈ V }.

There are three functions defined on the edges. To fulfill constraints (21) and
(22), the capacity function Capacity : E → Z+ is defined as Capacity(s, ui) =
wi, Capacity(v j, t) = xj , and Capacity(ui, v j) = n, for i, j = 0, 1, . . . , m − 1. To min-
imize the objective (20), the weight function Weight : E → R+ is defined as
Weight(s, ui) = Weight(v j, t) = 0 and Weight(ui, v j) = cij , for i, j = 0, 1, . . . , m − 1.
The goal is finding the minimum cost flow with required (also maximum) flow n.
The resultant flow function Flow : E → Z+ between U and V is our solution
yij = Flow(ui, v j), for i, j = 0, 1, . . . , m− 1.

An example mapped graph is shown in Figure 3 with m = 4. As stated earlier,
the graph is much simpler than bipartite matching in Figure 2 because each vertex
represents a state instead of a core.

4.2. Problem Solving

The minimum cost maximum flow problem can be solved by the successive shortest path
algorithm (SSPA) with optimum solution [Edmonds and Karp 1972] as in Algorithm 2.
SSPA iteratively finds the minimum-cost path between s and t on the residual network,
and augments the flow under the capacity constraint. Since the transition cost C
assigned for the edge weight is a nonnegative matrix, the minimum-cost path can be
found using Dijkstra’s algorithm for better efficiency.

The total number of edges is EW + EX + EY = m + m2 + m = m2 + 2m, and the
number of iterations is bounded by the maximum capacity n. Thus, the worst-case time
complexity is the number of edges times the number of iterations, which results in
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Fig. 3. Model state assignment as min-cost-max-flow problem. The complexity is proportional to the number
of states.

ALGORITHM 2: Successive Shortest Path Algorithm
1 while the residual network contains a path s � t do
2 path ← DIJKSTRA(G, Capacity, Flow, Weight, s, t);
3 aug ← min(u,v)∈path

(
Flow(v, u) > 0 : Flow(v, u)?Capacity(u, v) − Flow(u, v)

)
;

4 foreach (u, v) ∈ path do
5 if Flow(v, u) > 0 then
6 Flow(v, u) ← Flow(v, u) − aug;
7 end
8 else
9 Flow(u, v) ← Flow(u, v) + aug;

10 end
11 end
12 end

O(m2n). The complexity of SSPA can be further improved to O(m3 lg (n/m)) using the
scaling technique [Edmonds and Karp 1972], which reduces the number of iterations
by approximating the capacities with successively finer precisions.

In implementation, we can cache the mapping of (w, x) → y to further speed up our
policy. Since the system characteristics (m, n, C) are statically given and the optimum
state combinations (w, x) are finite, SSPA usually receives repeated input pairs and
produces the same results for state assignment. Thus, we can record some recent
results in a small table and look up the table before running SSPA with repeated input
pairs. Simulation results show that less than 100 entries are enough, especially for
systems with a small number of performance levels m.

4.3. Transitive Condition

The transition costs always satisfy the triangle inequality

cij + c jk ≥ cik for 0 ≤ i ≤ j ≤ k < m; (23)

otherwise the state transition i → k is replaced by i → j → k with smaller transition
cost. When the equality holds, we call this condition transitive, which is common in
power management. For example, when the transition delay is linearly proportional to
the voltage change [Isci et al. 2006], the transition costs become transitive.

Under the Transitive Condition, the time complexity of the State Assignment prob-
lem can be further reduced. By linear scanning through the states, the augmenting path
is directly determined, instead of finding by Dijkstra’s algorithm.
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ALGORITHM 3: State Assignment with Transitive Condition
1 i ← 0, j ← 0;
2 while i < m and j < m do
3 augu ← Capacity(s, ui) − Flow(s, ui);
4 augv ← Capacity(v j, t) − Flow(v j, t);
5 if augu < augv then
6 augment the path s → ui → v j → t with augu;
7 i ← i + 1;
8 end
9 else

10 augment the path s → ui → v j → t with augv;
11 j ← j + 1;
12 end
13 end

The complete method is shown in Algorithm 3. The iterators i and j scan through
states U and V , respectively. The variables augu and augv record the residual capacity
of ui and v j , respectively. The augmenting path is fixed as s → ui → v j → t. During
each iteration, at least one of ui and v j runs out of its residual capacity, and the
corresponding iterator moves to the next state. The number of iteration is 2m, and the
operations in each iteration are done in constant time. Thus, the time complexity is
greatly reduced to O(m).

Note that the flows created by Algorithm 3 are cross free because i and j are both
nondecreasing. Then we provide the optimality proof for this algorithm under the
Transitive Condition. In other words, we need to prove that the resultant residual
network does not contain any negative-weight cycle; otherwise, we can augment the
cycle and lower the total costs.

First we define the forward edges Ef orward = {(u, v) ∈ U × V : Flow(u, v) < n} and the
reverse edges Ereverse = {(v, u) ∈ V × U : Flow(u, v) > 0} in the residual network of G
induced by the flow in the preceding algorithm.

Then we define the weight of a path as the summation over the weight of each
edge on the path. We need to prove the weight of any cycle (with equal number of
forward and reverse edges) is nonnegative; otherwise, better solutions can be obtained
by augmenting those negative-weight cycles.

LEMMA 4.1. Let l denote the number of forward (reverse) edges of a cycle on the residual
network, then the forward edges of a cycle form at least a cross for l ≥ 2.

PROOF. The path is closed to form a cycle. Since the reverse edges contain no cross,
those forward edges must contain at least a cross if a cycle contains more than one
forward edge.

THEOREM 4.2. The weight of any cycle on the residual network is nonnegative.

PROOF. Since the flow on a cycle is the same, we add the weight of forward edges and
subtract the weight of reverse edges to calculate the weight of a cycle.

For l = 1, Weight(u, v) − Weight(u, v) = 0 : (u, v) ∈ Ef orward, (v, u) ∈ Ereverse.
For l = 2, let uα, vβ, uγ , vδ be the four vertexes on the cycle where (uα, vβ), (uγ , vδ) ∈

Ef orward, (vβ, uγ ), (vδ, uα) ∈ Ereverse. According to Lemma 4.1, γ < α ∩ β < δ ∪ α < γ ∩ δ <
β. Without loss of generality, we assume α ≤ β and then there are six possibilities, as
shown in Figure 4. In either case, cαβ − cβγ + cγ δ − cδα ≥ 0.

Suppose that the weight of any cycle with l = k (k ≥ 2) is nonnegative, and without
loss of generality, let the cycle with l = k + 1 be uα � vβ → uγ → vδ → uα; an example
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Fig. 4. The six possibilities for the weight of any cycle with two forward (reverse) edges on the residual
network.

Fig. 5. Decompose a cycle uα � vβ → uγ → vδ → uα with l = k + 1 into two cycles: uα � vβ → uα with l = k
and uα → vβ → uγ → vδ → uα with l = 2.

diagram is drawn in Figure 5. This cycle can be decomposed to uα � vβ → uα with l = k
and uα → vβ → uγ → vδ → uα with l = 2. Because either of the decomposed cycles has
nonnegative weight, the total weight of the cycle with l = k + 1 is also nonnegative.

Then the proof is completed by mathematical induction.

5. SIMULATION RESULTS

In this section, we first run simulations to compare the power and performance among
different algorithms, then analyze the runtime (policy overhead) of them. The simula-
tions and runtime analysis are both conducted on Intel Xeon CPU E5420 running at
2.5GHz.

Our algorithms based on CO are compared to SD [Winter et al. 2010], which is
claimed to be more effective than other approaches in the work of Winter et al.

5.1. Environment Settings

We combine the instruction-set performance simulator Multi2Sim [Ubal et al. 2007]
and power simulator McPAT [Li et al. 2009] to obtain statistics for multiprocessor
systems. Both simulators are adapted to support per-core DVFS, where the frequency
and voltage of each core can be scaled dynamically. The global power manager with the
preceding policies are triggered periodically. In our simulations, the power management
period is set to 1ms, which is between 0.5ms in Isci et al. [2006] and 10ms in Winter
et al. [2010]. During each period, the performance statistics (the number of accesses
of each component) of the last period are collected from Multi2Sim and sent to McPAT
to obtain the corresponding power statistics (the dynamic and leakage power of each
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Table V. SPEC CPU2006 Benchmarks [Henning 2006]

Group Context 0 Context 1 Context 2 Context 3
group1 gcc (I) perlbench (I) bwaves (F) bzip2 (I)
group2 milc (F) gamess (F) zeusmp (F) mcf (I)
group3 cactusADM (F) leslie3d (F) gromacs (F) namd (F)
group4 soplex (F) povray (F) dealII (F) gobmk (I)
group5 sjeng (I) GemsFDTD (F) hmmer (I) calculix (F)
group6 h264ref (I) lbm (F) tonto (F) libquantum (I)
group7 aster (I) xalancbmk (I) sphinx3 (F) omnetpp (I)

Table VI. Configuration Parameters of ARM Cortex A9 [ARM 2008]

Parameter Name Parameter Value
Number of cores 4
Number of threads per core 1
Technology node 40nm
Operating frequency 2000MHz
Supply voltage 0.66V
Threshold voltage 0.23V
Decode width 2
Issue width 4
Commit width 4
Number of ALUs per core 3
Number of MULs per core 1
Number of FPUs per core 1
Branch predictor Two-level, 1024-set, 2-way BTB
L1 data cache 32KB, 4 way, 10-cycle latency
L1 instruction cache 32KB, 4 way, 10-cycle latency
L2 unified cache 1MB, 8 way, 23-cycle latency

component). Based on the feedback information, the global power manager determines
the power mode of each core and sets corresponding frequency and voltage for the next
period.

We use the benchmark set SPEC CPU2006 V1.2 [Henning 2006], whereas its pre-
vious (retired) version CPU2000 is widely used to evaluate DVFS policies in previous
works [Isci et al. 2006; Teodorescu and Torrellas 2008; Meng et al. 2008; Winter et al.
2010]. The benchmarks are randomly partitioned into seven groups, as listed in Table V.
Each group contains a random number of integer (denoted as I) or floating-point (de-
noted as F) benchmarks. The benchmarks (contexts) are scheduled using the built-in
dynamic scheduler in Multi2Sim [Ubal et al. 2007], where the thread-binding over-
heads are inherently modeled in the simulator. Each run of simulation is terminated
after 1 billion instructions in total are committed.

The target multiprocessor architecture is based on ARM Cortex-A9 MPCore [ARM
2008], which consists of up to four processors in a cluster and a Snoop Control Unit
(SCU) ensuring coherency. Up to 14 power domains are supported, where the CPU,
data engine, and cache(s) of each processor can reside in different power domains.
With the IEM support, per-core DVFS policies can be implemented in software. The
configuration parameters obtained from the samples of McPAT [Li et al. 2009] and
the official manual [ARM 2008] are listed in Table VI. The technology parameters
are supported by McPAT [Li et al. 2009] as well. The simulations can be extended to
systems with more cores when the technology parameters are released by McPAT.

The settings of power modes are based on the ARM IEC [ARM 2005], which controls
the dynamic clock generator (DCG) and the dynamic voltage controller (DVC) to realize
DVFS-based intelligent energy management (IEM). Power modes can be selected from
up to 129 performance levels, where 128 and 0 are the highest and lowest levels,
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Table VII. Power Modes [ARM 2005]

Index Value Binary Value Performance Level Operating Frequency Core Voltage
0 10000000 100% 2000.0MHz 0.66V
1 01011100 72% 1437.5MHz 0.54V
2 01001000 56% 1125.0MHz 0.47V
3 00100100 28% 562.5MHz 0.35V

Fig. 6. Steady-state comparison for the two policies. The performance of CO is higher than or equal to SD
under any given power budget.

respectively. The power modes are obtained from the IEC manual [ARM 2005], whereas
the architecture and technology parameters are obtained from McPAT [Li et al. 2009].
The transition delay follows the 10mV/1μs setting as in Isci et al. [2006]. The detailed
values are listed in Table VII for simulation.

The relative power budget npm−1 ≤ P ≤ np0 is generated using the same method
as previous works [Isci et al. 2006] for comparison. Its value is updated every power
management epoch, according to the real power budget Pbudget (in Watts), the measured
power Pmeasured (in Watts), and the current power state combination. The equation is

P =
m−1∑
i=0

pixi ∗ Pbudget

Pmeasured
. (24)

Note that our policy is independent of the method of generating P; implementing this
method is only for fair comparisons.

5.2. Performance Analysis

First we show the steady-state performance under different values of power budget for
CO and SD in Figure 6. The x-axis is the power budget, representing the percentage
of maximum aggregate power. The y-axis is the resultant performance, representing
the percentage of maximum aggregate frequency. Compared to SD, CO achieves higher
or equal performance in any power budget, with the maximum improvement being
3.12%. For example, when the power budget is 68%, CO is able to find the power states
(0, 0, 1, 2) for the four cores with 82.03% aggregate frequency, whereas SD can only find
(0, 1, 1, 1) with 78.91% aggregate frequency at best.

Then we show the simulation results of performance curve for different benchmark
sets of CPU2006 in Figure 7, where the y-axis is the throughput (1 billion instructions
over the execution cycles) normalized to full-speed performance. In each of the seven
groups, CO achieves higher or equal throughput under the same power budget against
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Fig. 7. Performance curve under different values of power budget. For any group, CO achieves higher or
equal throughput with the same budget against SD [Winter et al. 2010].

SD. The curves are smoother than the steady-state analysis in Figure 6 because the
runtime power varying induces the state changes across several power modes.

In the steady-state comparison in Figure 6, we only count the dynamic power, which
is cubic proportional to the performance. However, in the simulation, the performance
improvement is diminished due to the inclusion of static power, which is only linearly
proportional to the performance. If the static power dominates the total power, then
CO and SD will find equivalent state combinations under any power budget. Besides,
the performance degradation is smaller for memory-bound benchmarks because the
memory subsystem is not slowed down as the cores. (Similar results are demonstrated
in Isci et al. [2006] as well.)

At last, we verify if the actual power consumption violates the given power budget
or not. In Figure 8, the x-axis is the power budget and the y-axis is the actual power
consumption, including dynamic and static power. We also draw the auxiliary green
lines and show that the power consumption of both CO and SD are under the given
power budget constraints.

5.3. Policy Overhead Analysis

As stated earlier, power management overhead contains the transition delay between
power states and the time to run the management policy itself. The former part is im-
plicitly included in the performance simulation shown in the previous section, whereas
the policy runtime is excluded because our instruction-set simulator lacks for the full-
system operating system. Therefore, we measure the runtime overhead of the two
policies and show the results in this section. To analyze the scalability of the two poli-
cies through simulation, we scale (m, n) up to 16 performance levels (according to ACPI)
and 512 cores (256 cores in Winter et al. [2010]), using the power statistics from the
previous section. The highest m performance levels from IEC [ARM 2005] are selected
for the power states.

The dynamic runtime of both policies are shown in Table VIII, which is averaged by
running 1 million epochs of GPM. Less than 100 table entries are used in CO, where
the caching effect of accelerating state assignment is analyzed in the next paragraph.
We have verified that our implementation of SD performs consistent simulation results
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Fig. 8. Real power curve under different values of power budget. For any group, both CO and SD [Winter
et al. 2010] are under any given power budget.

Table VIII. Runtime Comparison for Each Power Management Epoch

m n 2 4 8 16 32 64 128 256 512

4
SD (μs) 0.4 0.9 1.7 3.5 7.2 15.4 31.7 66.1 138.0
CO (μs) 0.0 0.0 0.1 0.3 0.7 0.9 1.0 1.0 1.1

Speedup (X) 11.2 21.1 30.8 10.6 10.9 17.6 32.3 64.1 125.6

8
SD (μs) 0.6 1.4 3.1 6.7 14.4 30.2 63.9 134.1 282.8
CO (μs) 0.1 0.1 0.2 2.2 4.3 5.4 5.9 6.0 6.1

Speedup (X) 12.9 26.2 13.1 3.0 3.3 5.6 10.9 22.2 46.1

16
SD (μs) 0.9 2.1 4.9 10.7 23.1 50.0 106.2 229.0 473.4
CO (μs) 0.1 0.1 0.5 6.1 11.9 14.8 16.0 16.5 16.7

Speedup (X) 13.7 29.8 9.7 1.8 1.9 3.4 6.7 13.9 28.3

with Winter et al. [2010]. The runtime of CO is faster than SD for any combination
of (m, n); our policy achieves up to 125.6 times speedup against the state-of-the-art
previous work. The speedup is greater for less number of states (m = 4) because
the (general-case) time complexity is O(m3 lg (n/m)) for CO and O(mn lg n) for SD; we
emphasize the scalability on the number of cores n while the number of states m is
limited. With (m, n) = (16, 512), CO consumes only 16.7μs on average, which is light
for per-core GPM. Note that the preceding analysis is for general cases; our policy can
be faster when any of the arithmetic sequence or the transitive conditions occurs.

Then we analyze the runtime improvement using the state assignment table
(caching), as shown in Figure 9 with different number of states m. In each figure,
the x-axis represents the number of cores n in logarithmic scale, and the y-axis shows
the runtime in microseconds. Different lines correspond to different policies with the
maximum table size inside the parentheses (with empty table at the beginning of simu-
lation). The solid lines show the same data as in Table VIII with less than 100 entries in
CO. The dot blue lines represent CO without state assignment table, showing that the
upper bound of the proposed policy is still scalable. The caching of state assignment is
effective for a small number of cores; using more table entries results in better runtime
for larger m or n. According to the system architecture (number of states and cores)
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Fig. 9. Runtime for online state assignment with different table sizes. Although CO is scalable without
table, it can be further improved using state assignment tables for small number of cores.

Fig. 10. Runtime for offline table generation. The one-time-only preprocessing of CO requires less than
1 second for up to 16 power states and 512 cores.

and requirement (averaged policy runtime), designers can trade off between runtime
and table size.

Finally, we show the overhead for table construction in Figure 10, where the unit
of the y-axis is in seconds. Different lines correspond to a different number of power
states with m in the brackets, matching the O(mn2) time complexity as analyzed. It
consumes only 0.76s for 16 states and 512 cores, which is acceptable for one-time-only
offline preprocessing.

6. RELATED WORKS

In recent years, there are more and more papers discussing DVFS-based power man-
agement on multiprocessors. They can be classified by the considerations (perfor-
mance, power, thermal, and process variation), the target workloads (single- or multi-
threaded, single- or multiprogrammed), the system architectures (chip-multiprocessors
and many-core architectures), and the scope of algorithms (global, distributed, and hi-
erarchical power managers).
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Performance and power are the main considerations; each policy either mini-
mizes power consumption with performance constraint or maximizes throughput with
power budget [Li and Martinez 2005; Rajamani et al. 2006]. Temperature is another
constraint to multiprocessors [Zanini et al. 2012], where dynamic thermal manage-
ment (DTM) combines DVFS and task migration to remove hotspots [Hanumaiah et al.
2011; Cochran and Reda 2012]. Core-to-core process variation is considered in some
works [Lee and Kim 2009]; the power managers are implemented in either hardware
[Herbert and Marculescu 2009] or software [Teodorescu and Torrellas 2008]. For the
preceding considerations, some information should be provided by dedicated hardware,
such as the performance counters and power sensors [Cochran and Reda 2012].

The per-core DVFS technique is shown better than chip-wide DVFS [Kim et al. 2008]
for the global asynchronous local synchronous architecture. Several distributed policies
with one power manager per island or core are proposed [Herbert and Marculescu
2007], including threshold-based policy [Talpes and Marculescu 2005], controller-based
policy [Juang et al. 2005], greedy-search policy [Magklis et al. 2006], and learning-based
policy [Shen et al. 2013]. Distributed policies are scalable but suboptimal due to the
lack of the global view.

Although per-core power management performs better than chip-wide control [Kim
et al. 2008], the overhead induced in centralized managers become overwhelming
for many-core architectures. Therefore, hierarchical approaches are introduced, using
DVFS to control the power and maximize throughput [Hanumaiah et al. 2011], either
for static islands [Mishra et al. 2010] or for dynamic groups of cores [Ma et al. 2011a].

Power management with multithreaded workloads are considered in some works
[Mishra et al. 2010]. Cebrian et al. [2011] proposed the power token balancing mecha-
nism to migrate the power tokens to the critical thread for multithreaded workloads.
On the other hand, GPM policies aim at overall throughput maximization for multi-
programmed workloads, as stated in the first section [Isci et al. 2006; Teodorescu and
Torrellas 2008; Meng et al. 2008; Winter et al. 2010].

Note that Hanumaiah et al. [2011] and Ma et al. [2011a] and the following heuristics
optimize throughput by maximizing the aggregate frequency as well. Several works
are based on GPM policies, extending to other power management techniques and
architectures. Sartori and Kumar [2009] extend MaxBIPS to become hierarchical for
many-core architectures. The thread motion technique [Rangan et al. 2009] also ex-
ploits MaxBIPS and migrate applications between cores with different voltage and
frequency levels. Besides, the DVFS-based policies can be combined with DPM to form
hybrid policies that can save more power in different environments [Bhatti et al. 2010;
Srivastav et al. 2012]. The power budget or other constraints can be determined by
control- or learning-based mechanisms in specific applications [Maggio et al. 2012].

7. CONCLUSIONS

In this article, we provide a scalable GPM policy for per-core DVFS; we first maximize
the steady-state performance in the state combination phase and then minimize the
transition cost in the state assignment phase.

We propose an optimum offline algorithm to construct the state combination table by
transforming the original problem and solving with dynamic programming in pseudo–
polynomial time. We obtain optimum solutions in linear time for state assignment by
modeling it as a minimum cost maximum flow problem and solving with the SSPA.
We also observe the arithmetic sequence and transitive conditions in GPM to further
speed up table construction and state assignment, respectively. The optimality of either
general or special solutions are mathematically proved; besides, the proposed approach
is shown to be better and faster than the state-of-the-art algorithm using commercial
benchmarks.
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Since many advanced policies are based on GPM, our algorithms form an efficient
engine for them. For example, it can be exploited in hybrid (DPM and DVFS) policies to
enhance the scalability. It could be wrapped into learning- or controller-based policies
for long-term optimization of the power budget. Process variation, thermal issues, and
workload variation may be further modeled and considered in the future.
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