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Abstract: A hypertournament or a k-tournament, on n vertices, 2≤k≤n,

is a pair T= (V,E), where the vertex setV is a set of size n and the edge setE

is the collection of all possible subsets of size k of V, called the edges, each

taken in one of its k! possible permutations. A k-tournament is pancyclic if

there exists (directed) cycles of all possible lengths; it is vertex-pancyclic

if moreover the cycles can be found through any vertex. A k-tournament

is strong if there is a path from u to v for each pair of distinct vertices

u and v. A question posed by Gutin and Yeo about the characterization

of pancyclic and vertex-pancyclic hypertournaments is examined in this
article.We extendMoon's Theorem for tournaments to hypertournaments.

We prove that if k≥8 and n≥k+3, then a k-tournament on n vertices is

vertex-pancyclic if and only if it is strong. Similar results hold for other

values of k. We also show that when n≥7, k≥4, and n≥k+2, a strong

k-tournament on n vertices is pancyclic if and only if it is strong. The bound

n≥k+2 is tight. We also find bounds for the generalized problem when

we extend vertex-pancyclicity to require d edge-disjoint cycles of each
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possible length and extend strong connectivity to require d edge-disjoint
paths between each pair of vertices. Our results include and extend those

of Petrovic and Thomassen. q 2009 Wiley Periodicals, Inc. J Graph Theory

Keywords: hypertournaments; Hamiltonian cycles

1. INTRODUCTION

Redei’s Theorem and Camion’s Theorem are two of the most well-known and important

theorems regarding tournaments and Hamiltonicity.

Theorem 1 (Redei). Every tournament has a Hamiltonian path.

A tournament is d-edge-connected if, for any two distinct vertices u, v∈V , there

are d pairwise edge-disjoint paths from u to v. It is strongly connected, or simply,

strong, if it is 1-edge-connected.

Theorem 2 (Camion). Every strong tournament has a Hamiltonian cycle.

A tournament T is pancyclic if there exist cycles of all possible lengths; it is vertex-

pancyclic if there exist cycles of all possible lengths containing each vertex of T .

Moon’s Theorem generalizes Camion’s Theorem.

Theorem 3 (Moon). Every strong tournament is vertex-pancyclic.

The proof of Redei’s Theorem is very simple, and a proof of Moon’s Theorem can

be found in [1]. A digraph is semicomplete if every pair of vertices has one or two

edges between them. All three theorems above are valid for semicomplete digraphs.

Let V be a n-set. Let E be the collection of all possible k-subsets of V , 2≤

k≤n, each taken in one of its k! possible permutations. A pair T = (V ,E) is called a

hypertournament or a k-tournament. Each element of V is a vertex, and each ordered

k-tuple of E is a hyperedge or, simply, an edge.

For vertices u,v∈V and an edge e= (x1, . . . , xk)∈ E , we say u dominates v via edge

e if u precedes v in e, that is if u= xi , v= x j , 1≤ i< j≤k. We denote this by uev. A

path consists of an alternating sequence

x0e1x1e2x2 . . . x`−1e`x`

of distinct vertices xi and distinct edges ei so that xi−1 dominates xi via ei , i =1, . . . ,`.

Such a path has length `. A cycle is a path when all vertices are distinct except x0= x`;

the cycle has the same length `. A path (cycle) of T is Hamiltonian if it contains

all vertices of T . Let V (X ) and E(X ) denote the set of vertices and edges of X ,

respectively, where X could be a (hyper)tournament, path, or cycle.

It is natural for one to ask whether these theorems hold for hypertournaments as well.

Gutin and Yeo [2] proved the following. The proof can also be found in Chapter 11

of [1].
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Theorem 4. Let k≥3.

(i) Every k-tournament on n≥k+1 vertices has a Hamiltonian path.

(ii) Every strong k-tournament on n≥k+2 vertices has a Hamiltonian cycle.

Recently, Petrovic and Thomassen [3] proved the following generalization of (ii).

Theorem 5. Let T be a d-edge-connected k-tournament on n vertices. If n≥k+1+

24d for k≥4, and n≥30d+2 for k=3, then T has d edge-disjoint Hamiltonian cycles.

Gutin and Yeo [2] mentioned as unsolved the problem of deciding if a k-tournament

is pancyclic or vertex-pancyclic. Specifically, we want to find all pairs (n,k) such that

every strong k-tournament of order n is pancyclic (vertex-pancyclic, resp.). Petrovic

and Thomassen [3] characterized the vertex-pancyclic k-tournaments.

Theorem 6. If k≥4 and n≥k+25 or if k=3 and n≥32, then T is vertex-pancyclic

if and only if T is strong.

However, Petrovic and Thomassen’s characterization of vertex-pancyclic k-tourna-

ments is incomplete in that it is only proved for sufficiently large n. In this article,

we will improve the bound that was given. Furthermore, regarding the pancyclicity

question posed by Gutin and Yeo, we will give a necessary and sufficient condition for a

k-tournament to be pancyclic. However, our characterization is only for n≥7 and k≥4.

Finally, we will improve upon the generalization made by Petrovic and Thomassen in

Theorem 5.

2. ON VERTEX-PANCYCLICITY

Petrovic and Thomassen answered the primary problem of deciding if a k-tournament

is vertex-pancyclic for n≥k+25, k≥4 and for n≥32, k=3; we relax these restrictions

of n. Their proof applied Hall’s Theorem first to provide disjointness of hyperedges,

then remove hyperedges used by the path P defined in Theorem 9 below. We reverse

the order, applying Hall’s Theorem after removing the hyperedges of P .

Lemma 7. Let T be a 3-tournament and P a path of T . A pair of distinct vertices

x and y can be in at most four of the hyperedges of P .

Proof. Let P=v0e1v1 . . .e`v`. Suppose x=vm and y=vn (remember that vertices

are distinct). As the hyperedges of a 3-tournament are triplets, if a hyperedge ei of P

contains both x and y, at least one of the vertices is an endpoint of the hyperedge in P .

Therefore the hyperedges of P containing both x and y are all incident upon vm or vn

in P . Hence there are at most four hyperedges of a path that contains a specific pair

of distinct vertices.

If one of x and y is not a vertex of P (respectively, neither of them are), then it is

clear that the maximum number of hyperedges containing both x and y is reduced to

two (respectively, zero). �
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Lemma 8. If

(i) k≥8 and n≥k+3,

(ii) k≥5 and n≥k+4,

(iii) k=4 and n≥11, or

(iv) k=3 and n≥15,

then
(

k

2

)

≤

⌈

1

2

(

n−2

k−2

)⌉

−(n−1) for k≥4 (*)

and
(

k

2

)

≤

⌈

1

2

(

n−2

k−2

)⌉

−4 for k=3

Proof. It is trivial to check the case k=3. Assume k≥4. If n=k+3, (*) can be

rearranged to give

k2+k+3=2

((

k

2

)

+k+2

)

−1≤

(

n−2

k−2

)

=

(

k+1

k−2

)

=
1

6
(k3−k)

It is easy to verify that k3−6k2−7k−18≥0 for k≥8. Similarly, for n=k+4, k≥5

suffices. For k=4, (*) holds with n=11. Now we apply induction on n; we wish
(

n−2
k−2

)

−2
(

k
2

)

−2n+3≥0. We have established the respective base cases above.

Increasing n by 1 increases
(

n−2
k−2

)

−2
(

k
2

)

−2n+3 by
(

n−1
k−2

)

−
(

n−2
k−2

)

−2=
(

n−2
k−3

)

−2.

This is nonnegative for k≥4, n≥k+1. �

Remark. The ceiling is actually required for the case of k=5, n=9; the inequality

does not hold when the ceiling is removed.

We form an ordinary tournament (2-tournament) M from T with vertex set V (T ) in

the following way. For u,v∈V (T ), orient the edge uv from u to v if u dominates v in at

least half of the hyperedges of T containing u and v. M is called the majority digraph

of T . In the case where u dominates v in exactly half of the hyperedges, M will have

an edge from u to v and another edge from v to u. Therefore, it is possible that the

majority digraph is not strictly a tournament. However, this distinction is immaterial

to the following proofs. Alternatively, one can randomly choose one of the two edges

to exclude from M to guarantee that the majority digraph is a tournament. This notion

was first introduced in [2].

Theorem 9. Let T be a k-tournament on n vertices. If

(i) k≥8 and n≥k+3,

(ii) k≥5 and n≥k+4,

(iii) k=4 and n≥11, or

(iv) k=3 and n≥15,

then T is vertex-pancyclic if and only if T is strong.
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Proof. It is obvious from the definition that a vertex-pancyclic T is strong. Now

assume that T is strong. Fix a vertex x of T and a length `∈{3,4, . . . ,n}; we shall

find an `-cycle of T through x . By construction of M , if u dominates v in M , then u

dominates v via
⌈

1
2

(

n−2
k−2

)⌉

hyperedges of T . Call these the corresponding hyperedges.

Assume first that k>3. If M is strong, then by Moon’s Theorem M has an `-cycle

C ′ of M through x . Pick a corresponding hyperedge for each edge of C ′. Lemma 8

guarantees that we may pick them all distinct, and then we have an `-cycle C in T .

Thus we may assume that M is not strong.

The relation that two vertices u and v are strongly connected (that there exists a

u→v path and a v→u path) is an equivalence relation; call the equivalence classes the

strong components. Let S1, . . . , St be the strong components of M . It is well known that

we can order these components such that there are no edges from S j to Si , 1≤ i< j≤ t .

We say these strong components are canonically ordered. S1 and St are called the

initial and terminal strong components of M , respectively.

Because T is strong, there exists a path P= x0e1x1e2x2 . . .epx p in T connecting a

vertex from the terminal component St to the initial component S1. Adding the p edges

{x0x1, x1x2, . . . , x p−1x p} to M , we obtain a strong semicomplete digraph D. As Moon’s

Theorem (a strong tournament is vertex-pancyclic) extends to strong semicomplete

digraphs (see [1]), there exists an `-cycle C ′ of D through x . We will form a cycle C of

T from C ′ by using the same vertex set (in the same permutation). The only condition

we need to check is that no edges are repeated. For an edge xi−1xi of C
′ that originated

from P , we use ei for C; note that these are distinct. For the remaining edges of C ′,

recall that each one has
⌈

1
2

(

n−2
k−2

)⌉

corresponding hyperedges. We form a bipartite

graph G with partite classes A and B. Every pair of vertices in T is a vertex in A. Every

k-subset of vertices in T is a vertex in B. A vertex in A is joined to a vertex in B if the

corresponding pair of vertices is contained in the corresponding k-subset. Since P has

at most n−1 hyperedges, after removing the hyperedges in P from B in the bipartite

graph G, the vertices in A have degree at least
⌈

1
2

(

n−2
k−2

)⌉

−(n−1). The vertices in

B have degree
(

k
2

)

; thus by Hall’s marriage Theorem, if
(

k
2

)

≤
⌈

1
2

(

n−2
k−2

)⌉

−(n−1),

then there is a complete matching from A into B. By Lemma 8, the inequality is

satisfied. Thus we can choose a hyperedge for each remaining edge of C ′ such that

all the hyperedges chosen (including those from P) are distinct. Therefore by using

these hyperedges, we have an `-cycle C of T through x . As ` and x are arbitrary, T

is vertex-pancyclic.

Assume now k=3. We repeat the first part of the proof. Again, P may have as many

as n−1 hyperedges. However, by Lemma 7, at most 4 of the corresponding hyperedges

for each pair of vertices are in P . Therefore we require
(

k
2

)

≤
⌈

1
2

(

n−2
k−2

)⌉

−4 instead,

which is satisfied by Lemma 8. �

Remark. Gutin and Yeo [2] proved that for k≥3, a hypertournament with n≥k+1

has a Hamiltonian path and strong one with n≥k+2 has a Hamiltonian cycle; see

Theorem 4 above. These bounds are tight: It is obvious that there are no Hamiltonian

paths for n=k; Gutin and Yeo constructed in [2] a strong k-tournament with n=k+1

vertices yet admits no Hamiltonian cycle.
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For k≥8, this theorem says a strong k-tournament with n≥k+3 vertices is vertex-

pancyclic. We also know that this statement is false for n=k+1. For the n=k+2

case, it is currently unknown whether the statement holds. We will, however, fill this

gap with pancyclicity in the following section. Also, for k<8, there are a few more

cases that have not been decided.

3. ON PANCYCLICITY

A k-tournament is pancyclic if it contains cycles of all possible lengths. For sufficiently

large n and k, a strong k-tournament T with n=k+2 vertices is pancyclic. To show

this, we will modify Lemmas 3.2 and 3.4 of [2], which were used to prove the second

part of Theorem 4.

Given a strong k-tournament T and its majority digraph M , we say that (P,Q) is

an `-cyclic pair of paths if P is an x→ y path in T and Q is a y→ x path in M such

that V (P)∩V (Q)={x, y} and |V (P)∪V (Q)|=`. We also require that x and y be in

different strong components of M if M is not strong.

For a path P and u,v∈V (P), uPv is the segment of P from u to v. For paths P

and Q such that the terminal vertex of P and the initial vertex of Q are the same or

are separated by a single edge (as in the case of a 2-tournament), PQ is the path by

adjoining Q after P .

Lemma 10. Let k≥3 and 3≤`≤n. For every strong k-tournament with n vertices,

there exists an `-cyclic pair of paths.

Proof. Let T be a strong k-tournament with n vertices. Suppose the majority digraph

M of T is strong. By Moon’s Theorem, M is vertex-pancyclic; hence, there exists

an `-cycle R= x1x2 . . . x`x1 in M . Then P= x1ex2, where e is an x1→ x2 edge, and

Q= x2Rx1 form an `-cyclic pair of paths.

Now we assume that M is not strong, and let S1, . . . , St be the canonically ordered

strong components of M (as in Theorem 9). Let R= x1e1x2e2 . . .em−1xm be the shortest

St → S1 path in T . Then x1∈ St , xm ∈ S1, and {x2, . . . , xm−1}∩(S1∪St )=∅. If m≥`,

then x` is not in St , and that there are no edges from St , which contains x1, to the strong

component containing x`. Therefore, since M is semicomplete, x`x1 is an edge in M .

Then P= x1Rx` and Q= x`x1 form an `-cyclic pair of paths, where the endpoints are

in different strong components.

Now assume m<`, let M ′ =M−{x2, x3, . . . , xm−1} and let S ′
1, . . . , S

′
t ′
, t ′ ≤ t , be the

canonically ordered strong components of M ′. Notice that M ′ is also semicomplete,

and that x1∈ S ′
t ′
and xm ∈ S ′

1 are still in the (new) terminal and initial components,

respectively. We want a path Q of length `−m+1≥2 from xm to x1 in M ′; then

(R,Q) is an `-cyclic pair of paths.

It remains to construct the desired path Q. Let j be minimum such that s=|S ′
1|+

|S ′
2|+· · ·+|S ′

j |+|S ′
j+1|≥`−m+1. For each strong component S ′

i , 1≤ i ≤ j , we choose

a Hamiltonian path Q ′
i , whose existence is guaranteed by Camion’s Theorem. For Q ′

1,

we stipulate that the path starts at xm ∈ S ′
1. Now we construct a path Q ′

j+1 such that

Q= xmQ
′
1Q

′
2 . . .Q

′
jQ

′
j+1x1 is of length `−m+1. Notice that there is precisely one

Journal of Graph Theory DOI 10.1002/jgt
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edge from the terminal vertex of Q ′
i to the initial vertex of Q ′

i+1, so the path Q is well-

defined. If j+1= t ′, then x1∈ S ′
j+1 and S ′

j+1 is strong, hence vertex-pancyclic (Moon’s

Theorem). Thus we can construct a path Q ′
j+1 in S

′
j+1 with `−m+2−s+|S ′

j+1| vertices,

ending at x1. Otherwise, if j+1< t ′, let Q ′
j+1 be a path in S ′

j+1 with `−m+1−s+

|S ′
j+1| vertices. Then indeed |Q ′

1|+|Q ′
2|+· · ·+|Q ′

j |+|Q ′
j+1∪{x1}|=`−m+2, so Q

has length `−m+1, as desired. �

For distinct vertices u,v∈V (T ), let ET (u,v) denote the set of edges of E(T ) in

which u dominates v; the subscript T is omitted when the tournament is clear from

context.

Theorem 11. Every strong k-tournament with n vertices, where n≥k+2≥6 and

n≥7, is pancyclic.

Proof. For n≥k+2≥6, we have
(

n−2
k−2

)

≥2n−4 if and only if n≥7. Let T be a

k-tournament with n vertices such that n≥k+2≥6 and
(

n−2
k−2

)

≥2n−4, and let M be

the majority digraph of T .

Gutin and Yeo proved that T is Hamiltonian (Theorem 4). Thus we fix a length

`∈{3,4, . . . ,n−1}, and show that there exists an `-cycle in T .

We first suppose that M is strong. By Moon’s Thereom, there exists an `-cycle

C ′ = x1x2 . . . x`x1 in M . For i =1,2, . . . ,`, we have |E(xi−1, xi )|≥
1
2

(

n−2
k−2

)

≥n−2,

where we define x0= x`. If `≤n−2, we can choose corresponding hyperedges e j

from T so that C= x1e1x2e2 . . .e`−1x`e`x1 is an `-cycle in T . So we may assume that

`=n−1. There exist distinct edges e1 and e2, such that {e1,e2}⊆ E(x1, x2). Also, since

k≤n−2=`−1, and since e1 and e2 do not contain the same set of vertices, one of

e1,e2 does not contain a vertex in the set {x3, x4, . . . , x`−1}. Without loss of generality,

assume xi 6∈e1, where i ∈{3,4, . . . ,`−1}. Since |E(xi−1, xi )|≥`−1, we can choose

corresponding hyperedges f j from T so that

P= xi f1xi+1 f2 . . . x` f`−i+1x1e1x2 f`−i+2x3 . . . f`−2xi−1

is a path of length `−1. Since xi 6∈e1, we have e1 6∈ E(xi−1, xi ); since |E(xi−1, xi )|≥

`−1, there is an edge f`−1∈ E(xi−1, xi )−E(P). Hence C= Pxi−1 f`−1xi is a cycle

of length `, as desired.

Now suppose that M is not strong. By Lemma 10, there exists an `-cyclic pair of

paths (P,Q), where P= x1e1x2e2 . . .ep−1x p is a path in T and Q= y1y2 . . . yq is a path

in M . Recall that y1= x p, yq = x1, and y1, yq are in different strong components of M .

Fix i such that yi and yi+1 are in different strong components of M . By definition of

M , we have |E(y j−1, y j )|≥
1
2

(

n−2
k−2

)

≥n−2≥`−1 for j>1. Also, if |E(yi , yi+1)|=

n−2, then |E(yi+1, yi )|≥n−2; but yi and yi+1 are in different strong components,

thus |E(yi , yi+1)|≥n−1≥`. As |E(y j−1, y j )|≥`−1 for j>1, we can extend the

path P to a path R=r1 f1r2 f2 . . . f`−1r` in T with r1= yi+1, r2= yi+2, . . . , rq−i =

yq = x1, rq−i+1= x2, . . . , r`+1−i = x p= y1, r`+2−i = y2, . . . , r` = yi , using edges of P

and choosing the remaining edges. Now as |E(yi , yi+1)|≥`, there is an edge f` ∈

E(yi , yi+1)−E(R). Hence Ryi f`yi+1 is a cycle of length ` in T . �
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Remark. There is a small gap between the inequalities in this result and that of

Theorem 4. Namely, for the cases of k=3 and n<7, a strong k-tournament on n≥k+2

vertices is Hamiltonian, but it is not shown here whether it is pancyclic.

4. ON d-DISJOINT-VERTEX-PANCYCLICITY

A k-tournament is d-disjoint-vertex-pancyclic if each vertex of T is contained in d edge-

disjoint `-cycles for each possible length `. Now we consider the generalized problem

by extending vertex-pancyclicity to require d edge-disjoint cycles of each possible

length and extending strong connectivity to require d edge-disjoint paths between each

pair of vertices.

To prove the following lemma, we use the calculus of finite differences: The

finite forward difference Dx f (x) of a function f (x) with respect to x is defined as

Dx f (x)= f (x+1)− f (x). The n-th finite difference is defined inductively as D
n
x f (x)=

Dx (D
n−1
x f (x)). If the function has more variables, they are held constant. This is the

discrete analog of the derivative.

Lemma 12. If n≥k+2d+1 for k≥8, then

d

[(

k

2

)

+(n−1)

]

≤

⌈

1

2

(

n−2

k−2

)⌉

Proof. Suppose k≥8 and n≥k+2d+1, we want to show that

f = f (n,k,d)=

(

n−2

k−2

)

+1−2d

[(

k

2

)

+n−1

]

is nonnegative. Now

Dn f (n,k,d)=

(

n−1

k−2

)

+1−2d

[(

k

2

)

+n

]

−

((

n−2

k−2

)

+1−2d

[(

k

2

)

+n−1

])

=

(

n−2

k−3

)

−2d

which is nonnegative when n≥k+2d+1 and k≥8. Therefore it remains to show that

f is nonnegative when n=k+2d+1.

To show that

g(k,d)= f (k+2d+1,k,d)=

(

k+2d−1

k−2

)

+1−2d

[(

k

2

)

+k+2d

]

is nonnegative, we shall show that g(k,1), Ddg(k,1), D
2
dg(k,1) and D

3
dg(k,d) are all

nonnegative for k≥8.

Journal of Graph Theory DOI 10.1002/jgt
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Now g(k,1)=
(

k+1
k−2

)

+1−2
[(

k
2

)

+k+2
]

reduces to the case of n=k+3 considered

in Lemma 8, and is nonnegative.

Note that
(

k+2d+1

k−2

)

=

(

k+2d+1

2d+3

)

=
k+2d+1

2d+3

k+2d

2d+2

(

k+2d−1

2d+1

)

hence

Dd g(k,d)= g(k,d+1)−g(k,d)

=

(

k+2d+1

k−2

)

−2

[(

k

2

)

+k

]

−4(d+1)2−

(

k+2d−1

2d+1

)

+4d2

=

(

k+2d+1

2d+3

k+2d

2d+2
−1

)(

k+2d−1

2d+1

)

−k2−k−8d−4

In particular,

Ddg(k,1)=

(

k+3

5

k+2

4
−1

)(

k+1

3

)

−k2−k−8−4

=
1

120
(k5+5k4−15k3−125k2−106k−1440)

which has only one real root between 5 and 6, and is 37 when k=6. Similarly,

D
2
dg(k,d)= Dd g(k,d+1)−Dd g(k,d)

=

[(

k+2d+3

2d+5

k+2d+2

2d+4
−2

)(

k+2d+1

2d+3

k+2d

2d+2

)

+1

](

k+2d−1

2d+1

)

−8

Then

D
2
d g(k,1)=

[(

k+5

7

k+4

6
−2

)(

k+3

5

k+2

4

)

+1

](

k+1

3

)

−8

=
1

5040
(k2+19k+76)(k+1)k(k−1)(k−2)(k−3)−8

which is clearly increasing when k≥4, and is 20 when k=5. Finally,

D
3
dg(k,d)= D

2
d g(k,d+1)−D

2
d g(k,d)

=
(k2+8dk+17k+16d2+56d+30)(k+4d+7)(k−2)(k−3)(k−4)

(2d+7)(2d+6)(2d+5)(2d+4)(2d+3)(2d+2)

×

(

k+2d−1

2d+1

)

which is clearly nonnegative for k≥4, d≥1. Therefore g(k,d)≥0 for k≥8, and

f (n,k,d) is increasing in n for n≥k+2d+1; we have that f is indeed nonnegative

for n≥k+2d+1, k≥8, as desired. �
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Theorem 13. Let T be a k-tournament on n vertices. If

(i) k≥8 and n≥k+2d+1, or

(ii) k=3 and n≥14d+1,

then T is d-disjoint-vertex-pancyclic if and only if T is d-edge-connected.

Proof. We review the proof of Theorem 9. It is again obvious that a d-disjoint-

vertex-pancyclic T is d-edge-connected. Now assume that T is d-edge-connected. We

again consider k>3 first. Fix a vertex x of T and a length `∈{3, . . . ,n}; we shall

find d disjoint `-cycles of T through x . We again construct the majority digraph M .

Previously, since T is strong, there exists a path P in T connecting a vertex x1 from

the terminal component St to a vertex x2 in the initial component S1. Now, because T

is d-edge-connected, T has d edge-disjoint paths P1, P2, . . . , Pd connecting x1 to x2.

We add the edges of Pi to M to obtain a strong semicomplete digraph Di . Moon’s

Theorem gives us an `-cycle C ′
i through x . Now we choose corresponding hyperedges

to get d disjoint `-cycles of T through x . The edges arising only from the Pi can

be directly used, as before. Since Pi has at most n−1 hyperedges, P1, . . . , Pd can

use at most d(n−1) hyperedges. Since each remaining edge of M corresponds to
⌈

1
2

(

n−2
k−2

)⌉

hyperedges, after removing the hyperedges in the Pi from B in the bipartite

graph G, the vertices in A have degree at least
⌈

1
2

(

n−2
k−2

)⌉

−d(n−1). Now we want

to choose d corresponding hyperedges for each of the remaining edges of M such that

all edges are disjoint. This can be accomplished by replicating A a total of d times.

Let A′ ={(a, i) :a∈ A, 1≤ i ≤d}, and join (a, i)∈ A′ with b∈ B if and only if a and b

are joined in G. Consider this new bipartite graph with partite classes A′ and B. Now

each vertex in B has degree d
(

k
2

)

. Since

d

(

k

2

)

≤

⌈

1

2

(

n−2

k−2

)⌉

−d(n−1)

by Lemma 12, Hall’s Marriage Theorem ensures that there exists a complete matching

from A′ to B. Thus for each edge e of M , we get d hyperedges of T by taking those

matched to (e, i), 1≤ i≤d. Now as these hyperedges are all distinct and disjoint from

those of P1, . . . , Pd , we can use these to form edge-disjoint `-cycles C1, . . . ,Cd through

x in T .

For k=3, Lemma 7 allows us to replace n−1 with 4 in the above proof. Now d
(

k
2

)

≤
⌈

1
2

(

n−2
k−2

)⌉

−4d becomes 3d≤
⌈

1
2
(n−2)

⌉

−4d, which is satisfied when n≥14d+1. �
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