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Abstract. Knutson, Tao, and Woodward [KTW04] formulated a Littlewood–Richardson
rule for the cohomology ring of Grassmannians in terms of puzzles. Vakil [Vak06] and
Wheeler–Zinn-Justin [WZ16] have found additional triangular puzzle pieces that allow one
to express structure constants for K-theory of Grassmannians. Here we introduce two
other puzzle pieces of hexagonal shape, each of which gives a Littlewood–Richardson rule
for K-homology of Grassmannians. We also explore the corresponding eight versions of
K-theoretic Littlewood–Richardson tableaux.

1. Introduction

Cohomology rings of flag varieties are a major object of interest in algebraic geometry,
see [Ful98, Man01] for an exposition. Perhaps the most well-studied and well-understood
examples are the cohomology rings of Grassmannians, with a distinguished basis of Schubert
classes. A Littlewood–Richardson rule is a combinatorial way to compute the structure
constants for this basis. Equivalently, those are the same structure constants cνλµ with which
certain symmetric functions – Schur functions sλ – multiply: sλsµ =

∑
ν c

ν
λµsν . In their

groundbreaking work Knutson, Tao, and Woodward [KT99, KTW04] introduced puzzles,
which allow for a powerful formulation of the Littlewood–Richardson rule. Puzzles are tilings
of triangular boards with specified boundary conditions by a set of tiles shown in Figure 1.
Using puzzles Knutson, Tao, and Woodward studied the faces of the Klyachko cone.
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Figure 1. The Knutson–Tao–Woodward tiles.

There is a cohomology theory for each one-dimensional group law, see [Haz12,LZ17]. For
the additive group law x⊕ y = x+ y one has the usual cohomology, while the multiplicative
group law x⊕y = x+y+xy gives the K-theory. K-theory of Grassmannians was extensively
studied, starting with the works of Lascoux and Schutzenberger. In [LS82] they introduced
the Grothendieck polynomials as representatives of K-theory classes of structure sheaves of
Schubert varieties. Fomin and Kirillov [FK94] studied those from combinatorial point of
view, introducing the stable Grothendieck polynomials Gλ. Stable Grothendieck polynomials
are symmetric power series that form a rather precise K-theoretic analog of Schur functions:
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their multiplicative structure constants are the same as those for classes of the structure
sheaves of Schubert varieties in the corresponding K-theory ring.

The first K-theoretic Littlewood–Richardson rule was obtained by Buch in [Buc02]. Vakil
[Vak06] has extended puzzles to K-theory, giving a puzzle version of the rule. His extension
works by adding a single additional tile to the set of tiles from the work of Knutson, Tao
and Woodward [KTW04]. Later, Wheeler and Zinn-Justin found an alternative K-theoretic
tile, that gives the structure constants of dual K-theory in an appropriate sense, see [WZ16].
Both Vakil and Wheeler-Zinn-Justin tiles have triangular shape and can be seen in Figure 2.
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Figure 2. The four K-theoretic tiles.

In this work we present two new tiles, adding either one of which to the standard collection
allows to recover structure constants of the Schubert basis in the K-homology ring of the
Grassmannians, as studied by Lam and Pylyavskyy [LP07]. Equivalently, the corresponding
puzzles produce a combinatorial rule for the coproduct structure constants of the stable
Grothendieck polynomials. The first such rule was obtained by Buch in [Buc02]. The tiles
have hexagonal shape and can be seen in Figure 2.

The paper proceeds as follows. In Section 2 we recall the known results on the cohomol-
ogy ring of Grassmannians, including tableaux and puzzles formulations of the Littlewood–
Richardson rule. In Section 3 we recall the K-theoretic version of the story, and state our
main results regarding the two new hexagonal tiles. We also systematize the eight different
tableaux formulations of the K-theoretic Littlewood–Richardson rule, some of which are new.
The proofs are postponed to Section 4. In Section 5 we conclude with remarks, including
the relation of our work to that of Pechenik and Yong [PY17] on genomic tableaux.

2. Puzzles and tableaux

2.1. Cohomology of Grassmannians. A partition λ = (λ1, λ2, . . . , λk) is a weakly de-
creasing sequence λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0 of finitely many nonnegative integers. The Young
diagram, or simply, diagram, of λ is a collection of boxes, top and left justified, with λi
boxes in Row i. For example, is the diagram of the partition λ = (4, 3, 1).

If λ is a partition whose diagram fits inside that of partition ν, the skew diagram of shape
ν/λ is the diagram consisting of the boxes of the diagram of ν outside that of λ. For example,
the following is the diagram of (4, 3, 1)/(2, 1).

Given a (possibly skew) diagram and a set V , a V -tableau T is a filling of the boxes with
values in V . If V is omitted, it is understood that V is the positive integers. The shape
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of T , denoted shape(T ), is the shape of the diagram. We say that T is semistandard if
the values are weakly increasing from left to right in rows and strictly increasing from top
to bottom in columns. The reverse row word of T , denoted row(T ), is the sequence of
values of T , read row by row, top to bottom, right to left. For example,

T = 1 1

2 2

1

is a semistandard tableau with shape(T ) = (4, 3, 1)/(2, 1) and row(T ) = 11221.
Let x1, x2, . . . be commutative variables, and let xT denote the monomial xw1xw2 · · ·xwr

where row(T ) = w1w2 · · ·wr. The Schur polynomial sλ is given by

sλ(x) =
∑
T

xT ,

where the sum runs over all semistandard tableaux T of shape λ. It is well known that sλ
is symmetric and {sλ}λ is a linear basis for the space of all symmetric polynomials (see e.g.
[Sta99]). We may therefore expand the product sλsµ uniquely as a sum of Schur polynomials
sν as

sλsµ =
∑
ν

cνλµsν .

It turns out that cνλµ, called the Littlewood–Richardson coefficient, is a nonnegative
integer, and is zero whenever |ν| 6= |λ|+ |µ|, where |λ| is the number of boxes of λ. In other
words, we can let the sum above run over only ν such that |ν| = |λ|+ |µ|. This implies that
the sum has finitely many terms.

The Littlewood–Richardson coefficients are ubiquitous, appearing naturally in a variety of
contexts, including the study of Schubert calculus and representation theory of symmetric
groups and of general linear groups. There are also many combinatorial rules for comput-
ing cνλµ. In what follows we recall three rules, two involving counting tableaux and one
involving counting puzzles.

2.2. Tableau versions of the Littlewood–Richardson rule. Let w = w1w2 · · ·wr be a
sequence of positive integers. The content of w, denoted content(w), is (m1,m2, . . . ,mk)
such that mi is the number of occurrences of i in the sequence w.1 We say w is ballot if
content(w1 · · ·wi) is a partition for every i. In other words, in every initial segment of w, the
number j occurs at least as many times as the number j + 1. The content of T , denoted
content(T ), is simply content(row(T )). We say that T is ballot if row(T ) is.

Theorem 2.1 (Littlewood–Richardson rule, skew version). For partitions λ, µ, ν such that
|ν| = |µ|+ |ν|, the coefficient cνλµ is the number of semistandard ballot tableaux of shape ν/λ
and content µ.

Example 2.2. Let λ = (2, 1), µ = (3, 2), and ν = (4, 3, 1) in the following examples. The
following are the (only) two ways to fill according to the Littlewood–Richardson rule.

1 1

2 2

1

1 1

1 2

2

1For example, if w = row(T ), then in the monomial xT , the exponent of xi is mi.
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This shows that cνλµ = 2. For visual purposes, we gray out the boxes corresponding to λ
instead of removing them. (This will be useful later when we temporarily write numbers in
removed boxes.)

Given two partitions λ and µ, let the ⊕ diagram of shape µ ⊕ λ be obtained by putting
the diagrams of µ and λ corner to corner, with µ to the lower left and λ to the upper right.
For example,

is a diagram of shape (3, 1)⊕ (2, 2).

Theorem 2.3 (Littlewood–Richardson rule, ⊕ version). For partitions λ, µ, ν such that
|ν| = |µ|+ |ν|, the coefficient cνλµ is the number of semistandard ballot tableaux of shape µ⊕λ
and content ν.

Example 2.4. We continue with λ, µ, ν from the example above. The following are the two
corresponding fillings using the ⊕ version of the Littlewood–Richardson rule.

1 1

2

1 1 3

2 2

1 1

2

1 1 2

2 3

These are displayed in the same order under the bijection that is described in later sections.

Of course, any ⊕ diagram µ⊕ λ is also a skew diagram of shape

(λ1 + µ1, . . . , λk + µ1, µ1, . . . , µk).

Nevertheless, we think of these classes of shapes separately, since we will have pairs of
tableaux rules, one involving shape ν/λ and one involving shape µ⊕ λ. We refer to ν/λ as
skew shape (and use grayed out boxes) and refer to µ⊕ λ as ⊕ shape (without using grayed
out boxes).

2.3. Puzzle version of the Littlewood–Richardson rule. Let n ≥ k be positive integers.
Refer to the partition of k rows of length n− k as the ambient rectangle. From now on,
we consider only partitions whose diagrams fit inside this ambient rectangle. (To consider
bigger partitions, simply specify a larger ambient rectangle.) On the lower right boundary
of a partition inside the ambient rectangle, write a 0 on each horizontal edge and a 1 on
each vertical edge (see Figure 3). A binary string of length n with k ones and n− k zeros is
obtained by reading these numbers from top right to bottom left.

λ = (4, 2, 1) ←→ ←→

001

001

01

01

←→ 0010010101

Figure 3. Bijection between partitions, Young diagrams, and binary strings;
n = 10, k = 4.
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Here we consider tilings on the triangular lattice. Knutson, Tao, and Woodward [KTW04]
introduced the following puzzle pieces (see Figure 4).

• 0-triangle: unit triangle with edges labelled by 0, two rotations;
• 1-triangle: unit triangle with edges labelled by 1, two rotations; and
• rhombus: formed by gluing two adjacent unit triangles together, with edges labelled

by 0 if clockwise of an acute angle and 1 if clockwise of an obtuse angle, three rotations.
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Figure 4. Puzzle pieces.

A tiling is an assembly of (lattice) translated copies of tiles, where edge labels of adja-
cent tiles must match. We are interested in tiling an upright triangular region ∆ν

λµ whose
boundary labels of the left, right, and bottom sides, read left-to-right, are the binary strings
corresponding to λ, µ, and ν (see Figure 5).
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Figure 5. Boundary ∆ν
λµ with λ = (2, 1, 0), µ = (3, 2, 0), and ν = (4, 3, 1).

Littlewood–Richardson coefficients can be calculated by counting puzzle tilings:

Theorem 2.5 (Knutson–Tao–Woodward [KTW04]). Suppose λ, µ, ν are partitions fitting
inside an (n − k) × k ambient rectangle, with |ν| = |λ| + |µ|. The number of puzzle tilings
with boundary ∆ν

λµ is cνλµ.

Example 2.6. Continuing with the running example from the previous section, since cνλµ =
2, there are two tilings of ∆ν

λµ:
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Here and subsequently, some edges (namely, the edges within a region of 0-triangles and the
1-edges of a sequence of rhombi) are omitted to suggest the structure of puzzle tilings.

3. K-theoretic puzzles and tableaux

In this section, we discuss four K-theoretic analogues of the Littlewood–Richardson co-
efficients. These coefficients can be calculated using four puzzle rules and eight tableaux
rules.

3.1. K-theory and K-homology of Grassmannians. The K-theoretic analogue of a
Schur function sλ is the single stable Grothendieck polynomial Gλ given by the formula

Gλ =
∑
T

(−1)|T |−|λ|xT ,

where the sum runs over all semistandard set-valued tableaux T of shape λ, and |T | is the
length of row(T ). The equivalence of this definition to other definitions is established by
Buch [Buc02].

Buch also showed that the linear span of {Gλ}λ is a bialgebra, with product given by

GλGµ =
∑
ν

(−1)|ν|−|λ|−|µ|cνλµGν

and coproduct ∆ given by

∆(Gν) =
∑
λ,µ

(−1)|ν|−|λ|−|µ|dνλµGλ ⊗Gµ.

It turns out that cνλµ = 0 when |ν| < |λ|+ |µ| and dνλµ = 0 when |ν| > |λ|+ |µ|. So we might
as well restrict the first and second sums to the cases where |ν| ≥ |λ|+ |µ| and |ν| ≤ |λ|+ |µ|,
respectively. Unlike the classical case, this does not immediately show that the sums are
finite, but indeed they are (Corollaries 5.5 and 6.7 of [Buc02]).

When |ν| = |λ| + |µ|, the number cνλµ is indeed the classical Littlewood–Richardson coef-
ficient described in previous sections. Since this is the only case where the classical cνλµ is
possibly nonzero, by an abuse of notation, we use the same symbol to denote both. It is
therefore paramount to require |ν| = |λ|+ |µ| when discussing cνλµ in the classical case.

The following slight variants of cνλµ and dνλµ arise naturally in the study of puzzles. Let

G̃λ = Gλ · (1−G1). Define c̃νλµ as the unique numbers such that

G̃λ · G̃µ =
∑
ν

(−1)|ν|−|λ|−|µ|c̃νλµG̃ν .

We again restrict to |ν| ≥ |λ|+ |µ|, the only time when c̃νλµ is possibly nonzero.
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Finally, let d̃νλµ be given by dν
′

λ′µ′ , where λ′ is the transpose of λ, i.e., mirror the diagram

of λ across the line x + y = 0. Since the number of boxes is preserved, the only time d̃νλµ is
possibly nonzero is when |ν| ≤ |λ|+ |µ|.

3.2. The four K-theoretic puzzles. Consider the puzzle pieces shown in Figure 6.
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Figure 6. Four additional puzzle pieces.

We refer to these puzzle pieces using the corresponding pictograms shown in the figure. If
X is (the pictogram of) an additional puzzle piece, an X-puzzle is a puzzle tiling where, in
additional to the usual puzzle pieces, translated copies of X can be used. There are known
interpretations of -puzzles and -puzzles.

Theorem 3.1 (Vakil [Vak06]). Suppose λ, µ, ν are partitions fitting inside an (n − k) × k
ambient rectangle, with |ν| ≥ |λ| + |µ|. The number of -puzzle tilings with boundary ∆ν

λµ

is cνλµ.

Theorem 3.2 (Wheeler–Zinn-Justin [WZ16]). Suppose λ, µ, ν are partitions fitting inside
an (n− k)× k ambient rectangle, with |ν| ≥ |λ|+ |µ|. The number of -puzzle tilings with
boundary ∆ν

λµ is c̃νλµ.

We establish interpretations of -puzzles and -puzzles.

Theorem 3.3. Suppose λ, µ, ν are partitions fitting inside an (n − k − 1) × k ambient
rectangle,2 with |ν| ≤ |λ|+ |µ|. The number of -puzzle tilings with boundary ∆ν

λµ is dνλµ.

Theorem 3.4. Suppose λ, µ, ν are partitions fitting inside an (n − k) × (k − 1) ambient

rectangle, with |ν| ≤ |λ|+ |µ|. The number of -puzzle tilings with boundary ∆ν
λµ is d̃νλµ.

3.3. The eightfold way. Like the classical case, where the puzzle rule corresponds to a
pair of tableau rules (involving diagrams of shapes ν/λ and µ⊕λ, respectively), we describe
four pairs of K-tableau rules corresponding to the four K-puzzle rules.

A set-valued tableau is a V -tableau where V consists of non-empty subsets of {1, . . . , k}.
To understand the semistandard condition in this context, we agree that for A,B ∈ V , A
is (strictly) less than B if maxA is (strictly) less than minB. When forming the reverse
row word, a value A ∈ V is expanded as the numbers in the set A, written from largest to
smallest.

Buch [Buc02] gives a combinatorial rule for calculating theK-theory Littlewood–Richardson
coefficient cνλµ by counting certain set-valued tableaux of ⊕ shape.

Theorem 3.5 ( rule, ⊕ version). The coefficient cνλµ is the number of semistandard ballot
set-valued tableaux of shape µ⊕ λ and content ν.

2For technical reasons, we require partitions to be slightly smaller. See Section 5.1.
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To describe the skew version of the K-theory rule, we consider a new kind of tableaux.
A circle tableau T is a V -tableau where V consists of {1, . . . , k} and the circled numbers

{ 1 , . . . , k }.
We say T is a right (resp., left) circle tableau if each i is the rightmost (resp., leftmost)

i or i in its row. (In other words, for each i, only the rightmost (resp., leftmost) i in a row
is optionally circled.) Moreover, circled values may only occur in the bottom k rows (that
is, anywhere in shape ν/λ, bottom half in shape µ⊕ λ).

We say T is semistandard if it is semistandard when the circled values are treated as if
they are not circled. Its content is content(w) where w is row(T ) with the circled values
omitted.

Let w be an initial segment of row(T ). If w ends with i , replace it with an uncircled
i + 1. Remove all other circled entries. Call the result the incremented erasure of w.
Analogously, call the result the unincremented erasure of w if the final i is replaced
with an uncircled i instead. We say that a right (left) circle tableau is ballot if all its
incremented (unincremented) erasures are ballot.

Pechenik and Yong [PY17] gives a combinatorial rule for calculating theK-theory Littlewood–
Richardson coefficient cνλµ by counting certain genomic tableaux of skew shape. We give an
equivalent formulation (see Section 5.2) here in terms of circle tableaux.

Theorem 3.6 ( rule, skew version). The coefficient cνλµ is the number of semistandard
ballot right circle tableaux of shape ν/λ and content µ.

An outer corner of (the diagram of) a partition µ is a box whose addition results in a
diagram of a partition.

Theorem 3.7 ( rule, ⊕ version). The coefficient c̃νλµ is the number of semistandard ballot
set-valued tableaux of shape µ+⊕λ and content ν, where µ+ is µ with some number (possibly
zero) of its outer corners added.

Theorem 3.8 ( rule, skew version). The coefficient c̃νλµ is the number of semistandard
ballot left circle tableaux of shape ν/λ and content µ.

Recall that a circle tableau of shape µ ⊕ λ do not have circles in the rows corresponding
to λ.

Theorem 3.9 ( rule, ⊕ version). The coefficient dνλµ is the number of semistandard ballot
right circle tableaux of shape µ⊕ λ and content ν.

An inner corner of (the diagram of) a partition λ is a box whose removal results in a
diagram of a partition.

Theorem 3.10 ( rule, skew version). The coefficient dνλµ is the number of semistandard
ballot set-valued tableaux of shape ν/λ− and content µ, where λ− is λ with some number
(possibly zero) of its inner corners removed.

A circle tableau of shape µ⊕ λ is limited if it has no i in Row i of the bottom half for
any i.

Theorem 3.11 ( rule, ⊕ version). The coefficient d̃νλµ is the number of limited semistan-
dard ballot left circle tableaux of shape µ⊕ λ and content ν.

Theorem 3.12 ( rule, skew version). The coefficient d̃νλµ is the number of semistandard
ballot set-valued tableaux of shape ν/λ and content µ.
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4. Proofs

4.1. Proof of Theorem 3.10. Given a sequence w = (w1, . . . , wr) and an interval [a, b], let
w|[a,b] be the sequence obtained by shifting the numbers down to the interval [1, b−a+ 1] by
subtracting a − 1 from each number wi in the range [a, b] (and omitting numbers that are
out of the range).

Theorem 4.1 (Buch [Buc02]). The coefficient dνλµ is the number of semistandard set-valued
tableaux T of shape ν with content (λ, µ) = (λ1, λ2, . . . , λk, µ1, . . . , µk), such that row(T )|[1,k]
and row(T )|[k+1,2k] are both ballot.

For notational convenience, local to this proof only, a Buch tableau is one described
in Theorem 4.1. and a PY tableau is one described in Theorem 3.10. There is a simple
bijection between Buch tableaux and PY tableaux.

Indeed, let T be a PY tableau. Increase each number in T by k. Extend the shape of T
to ν by filling in the first λi boxes of T with i in Row i. The result is clearly a Buch tableau.

Conversely, let T be a Buch tableau. It is easy to see that, as T is semistandard and
row(T )|[1,k] is ballot, the λi occurrences of i are exactly in the first λi boxes of Row i.
Remove these “small” numbers. A remaining “big” number in Row i cannot be in the first
λi − 1 boxes, since the λi-th box contained a small number. It can be in the λi-th box only
if the λi-th box in the next row did not contain a small number. In other words, only if this
box is an inner corner of λ. We therefore conclude that the shape of the remaining tableau
is ν/λ with some (possibly zero) inner corners of λ added. Decrease k from all the remaining
numbers to obtain a PY tableau.

This concludes the proof of Theorem 3.10.

4.2. Proof of Theorem 3.3. We prove Theorem 3.3 by establishing a bijection between
-puzzles and the tableaux described in Theorem 3.10. For notational convenience, we do

so by considering an example when k = 4. The general case is similar.

d
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o

Figure 7. An example tiling.
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It is easy to see that a -puzzle has the structure as in Figure 7. The sequence of rhombi
with label x is called the x-beam. By abuse of notation, we also let x denote the length
(that is, the number of rhombi) of the x-beam. For each x-beam, set x′ to x. Increment x′

by one if the x-beam is capped with a on top (as opposed to a triangle). In the example
above, t′, q′, and s′ are the ones that are incremented. The boundary also have some length
labels. We use the same labels as those in Tao’s “proof without words” (see [Vak06]).

We now describe a bijection from the -puzzles to skew tableaux. In the boxes of a
diagram of shape ν/λ, fill out according to the following schematic plan

1u

1t 2s

1r 2q 3p

1o 2n 3m 4h

where, a number x followed by a letter y in the schematic plan means to fill the number x
in y consecutive boxes. If y′ > y, write an additional x in the previous box, without using
space. Circle such a number for easy reference. The grayed out boxes correspond to λ and
may contain circled numbers; the white boxes correspond to ν/λ and each has exactly one
uncircled number. Call this tableau T .

Example 4.2. Applying the bijection described to the puzzle results in the following tableau.

1 1 1 1

1 1 1 2 2 2 2

1 1 2 2 2 3 3

1 1 2 3 3 3 3 3 4

From the tiling, one could read off certain equalities and inequalities (see Figure 8).
Shape. The top left picture shows that ν2 + 3 = 1 + j + 1 + k + 1 + ` = s + t + 1 +

b + 1 + c + 1 + d = s + t + λ2 + 3, or ν2 − λ2 = s + t. This means that the s + t uncircled
numbers we fill in Row 2 of ν/λ precisely takes up the ν2 − λ2 boxes. In other words, the

shape is unaffected by the tiles, except for the possibility of writing 1 in the shaded
boxes, discussed below.

Content. The top right picture shows that s′+1+q′+1+n′ = h+1+g+1+h = µ2 +2,
or µ2 = s′ + q′ + n′, leading to content(T ) = µ where i is treated as i.

Ballot. The lower left picture shows that u′+t′ ≥ s′+q′ ≥ p′+m′. This directly translates
to the ballot condition of T , again by treating i as i.

Semistandard. The lower right picture shows a final type of inequalities, which are
slightly more complicated. Let x ≥z y be a shorthand for x ≥ y + z′ − z. In other words,
x ≥z y means x ≥ y if z′ = z, and means x > y if z′ = z+ 1. If there are no tiles, the two
thick lines in the picture must not cross, yielding inequalities b ≥ r and b+t ≥ r+q. Because
of the tiles, these inequalities must be strict. Therefore we get b ≥t r and b + t ≥s r + q
instead. These inequalities translate to the semistandard condition of T by considering all
pairs of numbers in adjacent boxes. Also note that if b = 0, then b ≥t r says that t = t′ (and

r = 0), so there cannot be a 1 in Row 2 if λ2 = λ3. Similarly, there cannot be a 1 in

Row 4 if λ4 = 0. In general, 1 can only be written in the boxes corresponding to the inner
corners of λ.
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Figure 8. Inequalities from puzzles.

Finally, uncircle the circled numbers in T . Since circled numbers either share boxes with
uncircled numbers or occur in the inner corners of λ, what we get is a set-valued tableau of
shape ν/λ−, where λ− is λ with some inner corners removed. This concludes one direction
of the bijection.

Reversing the bijection is straightforward. First, we reverse the last step. Let T ′ be a
set-valued tableau of shape ν/λ− and content µ, where λ− is λ with some of its inner corners
removed. Circle all the numbers in boxes corresponding to inner corners of λ and all but the
smallest number in each of the boxes corresponding to ν/λ. This tableau with circles is in
fact T as described in the middle of the bijection above. Indeed, as T ′ is ballot, the numbers
appearing in Row i are all at most i. Also, if we were to get two i in some row, the right

i is sharing its box with a smaller number, so this row is not weakly increasing from left
to right, a contradiction to the fact that T ′ is semistandard.
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It remains to assemble the puzzle from the tableau T by reversing the first half of the
bijection. From bottom to top, add in beams of rhombi of the correct height based on the
multiplicities of numbers in the tableau, place an upright 1-triangle or hexagon on top of each
beam depending on the existence of a corresponding circled number, and join these together
using rhombi and upside-down 1-triangles in the only way possible. Repeat with the next set
of beams and such. Fill the remaining region with 0-triangles. This construction works, and
no tiles need to overlap or extend beyond the boundary, exactly because the inequalities we
derived above are satisfied if they came from such a tableau. Checking the details is routine
and therefore omitted.

4.3. Proof of Theorem 3.9. We prove Theorem 3.9 by establishing a bijection between
these tableaux and -puzzles. This bijection is extremely similar to the bijection in the
previous proof. We follow the same outline and use the same running examples.

Given a -puzzle, in the boxes of a diagram of shape µ ⊕ λ, fill out according to the
following schematic plan

1d 1c 1b 1a

2d 2c 2b

3d 3c

4d

1u 2t 3r 4o

2s 3q 4n

3p 4m

4h

where, as before, a number x followed by a letter y means to write x in y adjacent boxes.
If y′ > y, write an additional x in the next box, in its own space. Circle such a number.
Note that every box has exactly one number, which may or may not be circled. Call this
tableau T .

Example 4.3. Applying the bijection described to the puzzle results in the following tableau.

1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

3 3 3 3 3

4

1 1 1 1 2 2 2 3 3 4 4

2 2 2 2 3 3 3 4

3 3 4 4 4 4 4

4

We read off exactly the same equalities and inequalities from Figure 8. However, we
interpret them differently.

Content. The top left picture shows that ν2 − λ2 = s + t, leading to content(T ) = ν

where i is ignored.
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Shape. The top right picture shows that µ2 = s′ + q′ + n′, showing that i shall occupy
its own box.

Semistandard. The lower left picture shows that u′+ t′ ≥ s′+ q′ ≥ p′+m′. This directly
translates to the semistandard condition of T , where i is treated as i.

Ballot. The lower right picture shows the final type of inequalities, whose interpretation
is still slightly more complicated. Following the notation from the previous proof, we get
b + t ≥s r + q as one of these inequalities. Let us see how this kind of inequalities interact
with the ballot condition. Let w be an initial segment of row(T ). As an example, let us
compare the number of 2s and 3s. We may as well extend w with some more 3s without
adding 2s. For example, suppose w ends between the 2s and 3s of Row 2. There are at
least as many (uncircled) 2s as (uncircled) 3s in w if and only if b + t ≥ r + q. If there is a

2 between the 2s and 3s of Row 2, the incremented erasure of w would have an extra 3.
Therefore we must have b+ t ≥s r+q. Other requirements of the ballot condition all amount
to inequalities of this type.

This establishes one direction of the bijection. As before, reversing the bijection and
proving correctness is straight-forward, so we omit the details.

4.4. Bijection between puzzles and tableaux. Rather than repeat similar proofs over
and over, we present in table form the inequalities that can be read off from puzzles and
their corresponding interpretations in both skew and ⊕ tableaux rules.

For , like for , we let x′ = x + 1 if the added tile is above the x-beam; otherwise
x′ = x. For and , replace “above” in the definition above with “below.” Consequently,
u′, s′, p′, h′ are undefined for and .3 As before, x ≥z y is a shorthand for x ≥ y+ z′− z.

We first re-describe rules in table form to help orient the reader.

ν/λ µ⊕ λ
ν1 − λ1 = u

ν2 − λ2 = s+ t

ν3 − λ3 = p+ q + r

ν4 − λ4 = h+m+ n+ o

Shape:

i takes no space
set-valued

Content:

ignore i

µ1 = u′ + t′ + r′ + o′

µ2 = s′ + q′ + n′

µ3 = p′ +m′

µ4 = h′

Content:

i 7→ i

Shape:

i takes a box

u′ ≥ s′ ≥ p′ ≥ h′

u′ + t′ ≥ s′ + q′ ≥ p′ +m′

u′ + t′ + r′ ≥ s′ + q′ + n′

Ballot:

i 7→ i

Semistandard:

i 7→ i

a ≥u t b ≥t r c ≥r o d ≥o 0
b+ t ≥s r + q c+ r ≥q o+ n d+ o ≥n 0
c+ r + q ≥p o+ n+m d+ o+ n ≥m 0

d+ o+ n+m ≥h 0

Semistandard:

i in previous box
shape becomes ν/λ−

Ballot:

keep only last i

i 7→ i+ 1

3The and are “upside down” in the sense that they replace the upside down 1-triangle . Heuris-
tically, since there are fewer opportunities to use these tiles, their corresponding set-valued tableaux have

no option to fill a larger shape and circle tableaux have no i in Row i. The rules in the tables where this

manifests itself are marked with ( ).
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The inequalities for are very similar to those for . The main difference is seen in
the last rows of the tables. Consider the semistandard condition of the skew rule. While
the inequality a ≥u t dictates that 1 in Row 1 is to be written in the box before the 1s

corresponding to u, the inequality a ≥t t instead dictates that 1 in Row 2 is to be written
in the box after the 1s corresponding to t. Similarly, for the ⊕ rule’s ballot condition, the
erasure is not incremented. The other difference is marked with ( ) due to being upside
down.

ν/λ µ⊕ λ
ν1 − λ1 = u

ν2 − λ2 = s+ t

ν3 − λ3 = p+ q + r

ν4 − λ4 = h+m+ n+ o

Shape:

i takes no space
set-valued

Content:

ignore i

µ1 = u+ t′ + r′ + o′

µ2 = s+ q′ + n′

µ3 = p+m′

µ4 = h

Content:

i 7→ i

Shape:

i takes a box

no i in Row i ( )

u ≥ s ≥ p ≥ h

u+ t′ ≥ s+ q′ ≥ p+m′

u+ t′ + r′ ≥ s+ q′ + n′

Ballot:

i 7→ i

Semistandard:

i 7→ i

a ≥t t b ≥r r c ≥o o
b+ t ≥q r + q c+ r ≥n o+ n

c+ r + q ≥m o+ n+m

Semistandard:

i in next box
stay within shape ( )

Ballot:

keep only last i

i 7→ i
As compared to , the inequalities for look quite different on the surface. However,

it turns out we are essentially swapping the skew and ⊕ rules with each other. Indeed, the
only other difference is that , being upside down, is less frequently usable, as denoted by
( ) in two places.

ν/λ µ⊕ λ
ν1 − λ1 = u

ν2 − λ2 = s+ t′

ν3 − λ3 = p+ q′ + r′

ν4 − λ4 = h+m′ + n′ + o′

Shape:

i takes a box

no i in Row i ( )

Content:

i 7→ i

µ1 = u+ t+ r + o

µ2 = s+ q + n

µ3 = p+m

µ4 = h

Content:

ignore i

Shape:

i takes no space
set-valued

u ≥t s ≥q p ≥m h

u+ t ≥r s+ q ≥n p+m

u+ t+ r ≥o s+ q + n

Ballot:

keep only last i

i 7→ i+ 1

Semistandard:

i in previous box
stay within shape ( )

a ≥ t′ b ≥ r′ c ≥ o′

b+ t′ ≥ r′ + q′ c+ r′ ≥ o′ + n′

c+ r′ + q′ ≥ o′ + n′ +m′

Semistandard:

i 7→ i

Ballot:

i 7→ i
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The close relation between and is similar to that of between and . Indeed, one
difference of compared to is that its erasure is not incremented and i goes in the
next box, just like . On the other hand, the other difference is that does not have ( )
restrictions,4 like . The lack of perfect symmetry is somewhat puzzling.

ν/λ µ⊕ λ
ν1 − λ1 = u′

ν2 − λ2 = s′ + t′

ν3 − λ3 = p′ + q′ + r′

ν4 − λ4 = h′ +m′ + n′ + o′

Shape:

i takes a box

Content:

i 7→ i

µ1 = u+ t+ r + o

µ2 = s+ q + n

µ3 = p+m

µ4 = h

Content:

ignore i

Shape:

i takes no space
set-valued

u ≥s s ≥p p ≥h h
u+ t ≥q s+ q ≥m p+m

u+ t+ r ≥n s+ q + n

Ballot:

keep only last i

i 7→ i

Semistandard:

i in next box
shape becomes µ+

a ≥ t′ b ≥ r′ c ≥ o′

b+ t′ ≥ r′ + q′ c+ r′ ≥ o′ + n′

c+ r′ + q′ ≥ o′ + n′ +m′

Semistandard:

i 7→ i

Ballot:

i 7→ i

4.5. Correspondence to coefficients. In the previous section, we presented in table form
the relevant parts of the bijection between the four puzzle rules given in Section 3.2 and the
eight tableau rules given in Section 3.3. What remains is to relate these to the coefficients
defined in Section 3.1.

Buch [Buc02] proved Theorem 3.5, establishing that the rules count cνλµ. We proved
above that the rules count dνλµ.

4.6. Proof of Theorem 3.7. By definition, we have

Gµ ·G1 =
∑
µ′

(−1)|µ
′|−|µ|−1cµ

′

µ1Gµ′ .

By Theorem 3.5, the coefficient cµ
′

µ1 is 1 if µ′ is µ with a positive number of outer corners

added,5 and 0 otherwise. So

Gλ · (Gµ ·G1) = Gλ

∑
µ′

(−1)|µ
′|−|µ|−1Gµ′

=
∑
µ′

(−1)|µ
′|−|µ|−1

∑
ν

(−1)|ν|−|λ|−|µ
′|cνλµ′Gν

= −
∑
ν,µ′

(−1)|ν|−|λ|−|µ|cνλµ′Gν ,

4So, in the ⊕ rule, i can be written in the next box, even protruding beyond the shape µ. However, if

µ2 = µ3, say, the inequalities s ≥p p and s+ q ≥m p+m prohibit 3 and 4 , respectively, from protruding

in Row 3. As such, µ+ is µ with some outer corners added.
5Consider the shape 1⊕ µ. The numbers filled in the lower box corresponds to the rows of µ′/µ.
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where µ′ runs over µ with a positive number of outer corners added. By definition, we have∑
ν

(−1)|ν|−|λ|−|µ|c̃νλµGν = Gλ ·Gµ · (1−G1)

=
∑
ν

(−1)|ν|−|λ|−|µ|cνλµGν +
∑
ν,µ′

(−1)|ν|−|λ|−|µ|cνλµ′Gν ,

so

c̃νλµ = cνλµ +
∑
µ′

cνλµ′ .

By Theorem 3.5, c̃νλµ is the number of semistandard ballot set-valued tableaux of shape µ+⊕λ
and content ν, where µ+ is either µ or µ with a positive number of outer corners added, as
desired.

4.7. Proof of Theorem 3.4. By Theorem 3.3, it suffices to show a bijection between -
puzzles with boundary ∆ν

λµ and -puzzles with boundary ∆ν′

λ′µ′ . The bijection is simple:
mirror the puzzle across a vertical line and swap the 0 and 1 labels. This is clearly an
involution. Each of the original puzzle pieces is mapped to a valid puzzle piece. The and

pieces are mapped to each other. The boundary is mapped from ∆ν
λµ to ∆ν′

µ′λ′ .
6 Finally,

by definition, dνλµ = dνµλ, so we are done.

5. Final remarks

5.1. Consider the example λ = (2, 1), µ = (4, 2), and ν = (4, 3, 1). The skew tableau

1 1 1

2 2

1

corresponds to the -tiling

Since the shapes all fit in a 4 × 3 box, one might think n = 7 is sufficient side length for a
puzzle. However, the piece will protrude to the left of the puzzle with side length 7. In
Theorem 3.3 (and analogously in Theorem 3.4), we dealt with this issue by increasing the
puzzle size length by one.

Another way to solve this issue is to add an additional trapezoid piece

6Indeed, recall that the binary string of a partition λ corresponds to the boundary of the diagram of λ.
Reversing the string rotates (the boundary of) the diagram by 180◦. Swapping 0 and 1 in the string flips
the diagram across the line x = y. Composing these two transformations flips the diagram across the line
x+ y = 0.
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0

10

1
1

as if to allow the hexagonal tile to protrude to the left. (By the way things are set up, the
hexagon never needs to protrude to the right or below.) However, we do not want this piece
used elsewhere. So we must make some more modifications. Here is the complete set of tiles.

0
00 0

0
0

1
11

1
122

1
1

1
0

1
0

1
0

1
0

2

01

0 2

02

0 0

1
0

1

0
1

0

1
0

2

0
1

0

10

1
1

Consider the northeast–southwest slanting 1 edges. A 1-edge on the bottom-right side of
pieces are now labelled with 2, so the new trapezoid piece cannot be used except at the left
boundary. An old piece with a 1-edge on its top-left side must be duplicated, with a version
for use at the left boundary and another for use in the interior.

5.2. Theorem 3.6 gives a skew tableau rule for calculating the K-theoretic Littlewood–
Richardson coefficients cνλµ using right circle tableaux. Pechenik and Yong give the same
rule using genomic tableaux (see [PY17] for definitions).

Theorem 5.1 ( , Pechenik–Yong [PY17], K-theory, skew version). The coefficient cνλµ is
the number of semistandard ballot genomic tableaux of shape ν/λ and content µ.

These two rules are virtually identical, as there is a simple bijection between right circle
tableaux and genomic tableaux. Indeed, let a semistandard ballot right circle tableau of
shape ν/λ and content µ be given. By semistandardness, the boxes filled with i and i
form a horizontal strip. From left to right, rewrite these as i1, i2, i3, and so on. Whenever
i is encountered, the next subscript used is the same as this subscript. By ballotness, the

rightmost i in the tableau is not circled, so this rule is well-formed. It is easy to see that this
yields a semistandard genomic tableau of the same shape and content. One can also check
that the tableau is ballot.

Conversely, given a semistandard ballot genomic tableau, the boxes filled with ij for a
fixed i form a horizontal strip. From left to right, circle an entry if its subscript is the same
as the next one. Erase all subscripts. The correctness of this bijection is straightforward and
left as exercise to the reader.

Example 5.2. The structure constant c
(4,2,1)
(2,1),(2,1) is computed by the circle tableaux

1 1

2

1

1 1

1

2

1 1

2

2

and by the corresponding genomic tableaux

11 12

21

11

11 12

11

21

11 12

21

21
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