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Abstract

Consider all geodesics between two given points on a polyhedron. On the regular tetrahedron, we
describe all the geodesics from a vertex to a point, which could be another vertex. Using the Stern–
Brocot tree to explore the recursive structure of geodesics between vertices on a cube, we prove, in
some precise sense, that there are twice as many geodesics between certain pairs of vertices than other
pairs. We also obtain the fact that there are no geodesics that start and end at the same vertex on
the regular tetrahedron or the cube.

Keywords: geodesic, cube, regular tetrahedron, Stern–Brocot tree

1 Introduction

Geodesics on surfaces are curves that are locally shortest. We consider the following problem: Given a
point p on a polyhedron and a vertex v, what are the geodesics from p to v? In this paper, we focus on
the cube, and in particular on vertex-to-vertex geodesics, that is, where p is also a vertex. Even though
geodesics on convex polyhedra do not pass through vertices, it is possible for a geodesic to start and end
at the same vertex (a “geodesic loop”). However, it turns out that this does not happen for the regular
tetrahedron and the cube (see Corollaries 3.8 and 5.15, respectively), so we consider p distinct from v.

1.1 Previous results

Fuchs and Fuchs [3] studied closed geodesics on regular polyhedra. They give the (previously known,
simple) result for the regular tetrahedron and also describe all closed geodesics on the cube and regular
octahedron.

For the regular tetrahedron ([3, §3]), they show that every geodesic is non-self-intersecting and give a
simple characterization of every closed geodesic. Since it does not intersect itself, every closed geodesic
cuts the surface of the tetrahedron into two pieces. For the cube ([3, §4]), they show that, up to symmetry
and translation, there are exactly three non-self-intersecting closed geodesics, two of which are planar.
They also show that for a self-intersecting closed geodesic, all the self intersections are perpendicular.
They exhibit all three non-self-intersecting geodesics and show several examples of longer geodesics with
many self intersections.

More generally, over the past century many authors have studied straight paths on polyhedra. Alexan-
drov showed in 1950 that a shortest path never passes through a vertex of positive curvature [1]. Similarly,
Sharir and Schorr showed that on a convex polyhedron, shortest paths do not pass through vertices [5],
although they may do so on a non-convex polyhedron [4]. Moreover, shortest paths never self-intersect
or intersect the same face more than once. Locally, closed geodesics are shortest paths and therefore
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inherit some of these properties. In particular, a closed geodesic cannot pass through a vertex. In con-
trast, a geodesic loop can start and end at the same vertex, but its ends cannot join smoothly to form
a locally shortest path at the vertex. These results are discussed in Demaine and O’Rourke’s excellent
comprehensive book ([2, §24]).

1.2 Results presented in this paper

In Section 3, we characterize all of the geodesics from any point to any vertex on the regular tetrahedron.
Theorem 3.6: We describe the directions from a given point p in which a geodesic will end at a given

vertex v.
Corollary 3.7: Given a pair of (necessarily distinct) vertices v0 and v, we give a complete description

of the directions of geodesics from v0 to v.
In Section 4, we introduce our conventions and give basic results about geodesics on the cube.
In Section 5, we develop the beautiful recursive structure underlying vertex-to-vertex paths on the

cube, based on the Stern–Brocot tree. We use this structure to derive several results:
Theorem 5.17: There are twice as many geodesics to the cube vertex at greatest distance from the

starting vertex as there are to each of the three vertices that are diagonally opposite the starting vertex
along a common face, and 1.5 times as many as to the three adjacent vertices. (The notion of “twice as
many” is made rigorous below.)

Corollary 5.18: We count the number of geodesics to a given vertex, depending on the “depth” in
the Stern–Brocot tree.

In Section 6, we consider geodesics starting from a general point in a face by associating them with
line segments from a point in the unit square to a lattice point in R2.

Lemma 6.1: We characterize the lattice points that are reachable (“visible”) from a starting point p
in a face.

Proposition 6.3: We give an algorithm for determining the “tumble sequence” to a given lattice
point.

2 Basic definitions

Given a polyhedron, a geodesic is a locally shortest curve on its surface.
Our goal is: Given a polyhedron S, a distinguished vertex v, and a distinguished point p (which may or

may not be a vertex), determine all of the geodesics from p to v. We consider a ray starting at p, following
the surface of S, possibly wrapping around S many times, before finally arriving at v. To do this, we
unfold the faces of S in the following way. For concreteness, suppose that the face containing p is on
the xy-plane. When the ray hits an edge e, we tumble S by applying the unique orientation-preserving
isometry that fixes edge e and places the adjacent face of S on the xy-plane on the other side of e.1 After
the tumble, the geodesic continues on this new face. These two segments in the xy-plane form a straight
line segment by definition. We continue in like manner until the geodesic hits a vertex. In such a way,
a geodesic on S naturally corresponds to a straight line segment in the xy-plane, contained in a strip
formed by copying the faces of S to the xy-plane as S tumbles. Note that the unfolding depends on the
geodesic being considered.

In this paper, we study special cases of this polyhedron problem: the regular tetrahedron and the cube.
These polyhedra are especially elegant because their faces tile the plane. When either of these polyhedra
is tumbled in all possible ways, the points in the xy-plane touched by the vertices form a lattice Λ. We
note that Λ is the equilateral triangle lattice for the tetrahedron and the square lattice for the cube.

Definition 2.1. Given a point p ∈ R2, a lattice point q ∈ Λ distinct from p is visible (from p) if the
interior of the segment pq from p to q does not contain any lattice points of Λ (see Figure 5.1).

Lemma 2.2. Let S be the regular tetrahedron or the cube and Λ the corresponding lattice. A segment pq
on the xy-plane corresponds to a geodesic of S ending at a vertex if and only if q ∈ Λ is a visible lattice
point.

1Think of this as rolling a polyhedral die on a tabletop without slipping.
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Proof. We reconstruct the corresponding geodesic given the segment on the plane: each time the segment
leaves the current face through an edge, we tumble S across that edge. The added vertex of this new face
is of course a lattice point. If q is not a lattice point, then the corresponding geodesic does not end at
a vertex. On the other hand, if q is a lattice point that is not visible, then the corresponding geodesic
passes through a vertex, a contradiction.

We identify the geodesics on S with the corresponding segments in the xy-plane (see Figure 4.2).

3 The regular tetrahedron

Let T be the regular tetrahedron whose edges are all of unit length. Given a point p on the surface of T
and a vertex v of T , we wish to characterize all geodesics from p to v.

Label the vertices of T by the elements of (Z/2)2, and think of T : (Z/2)2 → R3 as the location
of its four vertices. For concreteness, suppose T is initially placed with T (0, 0) = (0, 0, 0) at the origin,

T (1, 1) = (1, 0, 0) on the positive x-axis, T (1, 0) = u =
(
1
2 ,
√
3
2 , 0

)
on the first quadrant of the xy-plane,

and T (0, 1) =
(
1
2 ,

1
2
√
3
,
√

2/3
)
. Moreover, suppose p is on the xy-plane.

A geodesic on T starting at p and ending at a vertex is uniquely determined by its initial angle α
above the horizontal: it corresponds to a ray in the xy-plane emanating from p with slope tanα. The
question becomes: Given a segment in the xy-plane, determine whether it corresponds to a geodesic and,
if so, the vertex label of its endpoint.

This follows easily from two simple lemmas. Let Λ be the lattice generated by

u =
(
1
2 ,
√
3
2 , 0

)
and v =

(
1
2 ,−

√
3
2 , 0

)
.

A lattice point q ∈ Λ can be uniquely written as q = au + bv for some a, b ∈ Z. Label q with (ā, b̄), where
ā, b̄ ∈ Z/2 are the images of a and b, respectively, under the canonical surjection Z� Z/2. This gives a
labeling map χ : Λ→ (Z/2)2.

Lemma 3.1 (Labeling). If a segment pq on the xy-plane corresponds to a geodesic of T ending at a
vertex v, then v is the label of the endpoint q, that is, χ(q) = v.

Proof. We need only check that the labels of the lattice points are locally consistent. First, notice that
the lattice points form unit equilateral triangles. Pick two such triangles ∆1 and ∆2 that share an edge e.
It is easy to check that the four lattice points have distinct labels. As such, if T rests on top of ∆1 such
that its vertices are consistent with the labels of the lattice points, then tumbling T across e will cause T
to sit on top of ∆2, again with consistent labels. Since this works for any pair of adjacent triangles, we
are done.

Finally, we derive an algebraic criterion for the visibility of a lattice point. Note that the starting
point p can be uniquely written as p = xu + yv for some x, y ∈ [0, 1). By rotating and relabeling T ,
without loss of generality, we shall assume that α ∈ (−π/3, π/3]. That is, only consider lattice points
q = au + bv where a > x and b ≥ y. A portion of the labelled lattice is shown in Figure 3.1.

Definition 3.2. For x ∈ R, define the denominator pxy as

pxy =

{
0 if x /∈ Q,
1
d if x = c

d , c ∈ Z, d ∈ Z+, and gcd(c, d) = 1.

Note that for rational input x, the value of pxy is the denominator of the lowest terms fraction
representing x.

Lemma 3.3 (Visibility). For a > x and b ≥ y, the lattice point q = au + bv is visible from p = xu + yv
if and only if p b−ya−xy ≤

1
a .

Proof. If q is not visible, there exists ru + sv that lies on the segment from p = xu + yv to q = au + bv.
That means b−y

a−x = b−s
a−r ∈ Q. Let d = a− r; since 0 < r < a, we have 0 < d < a. Thus p b−ya−xy ≥

1
d >

1
a .

Conversely, suppose p b−ya−xy = 1
d >

1
a . Let c = b−y

a−x · d ∈ Z. Then (a− d)u + (b− c)v is a lattice point that
lies on the segment pq.
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Figure 3.1: The labeling of the triangular lattice Λ. The starting point is in the grey region.

Corollary 3.4. For a, b ≥ 0, a lattice point q = au + bv is visible from the origin if and only if
gcd(a, b) = 1.

Remark 3.5. If we start at a point p = xu + yv such that one of x and y is rational and the other is
irrational, all lattice points are visible, because b−y

a−x is irrational for all a, b ∈ Z.

We obtain a description of point-to-vertex geodesics by using the lemmas above.

Theorem 3.6. Let p = xu + yv for some x, y ∈ [0, 1). The vectors corresponding to geodesics from p to
vertex (a′, b′) are {

(a− x)u + (b− y)v | a ≡ a′, b ≡ b′ (mod 2) and p b−ya−xy ≤
1
a

}
with corresponding angles arctan

√
3(a−b−x+y)
(a+b−x−y) .

Theorem 3.6 may not be an entirely satisfying classification, because it relies on our non-standard
denominator function. However, this theorem, along with Corollary 3.4, gives a complete description of
vertex-to-vertex geodesics:

Corollary 3.7. The starting angles of geodesics from vertex (0, 0) to vertex (a′, b′) are{
arctan

√
3(a−b)
a+b | a ≡ a′, b ≡ b′ (mod 2), gcd(a, b) = 1

}
.

To end at vertex (0, 0), the numbers a and b must both be even, contradicting the gcd condition.

Corollary 3.8. The regular tetrahedron admits no geodesic loop at a vertex, i.e., a geodesic that starts
and end at the same vertex.

It can be seen in Figure 3.1 that every lattice point labelled (0, 0) is not visible from the origin.

4 Introduction to the cube

We define basic conventions for the cube and make some simple observations about geodesics on the cube,
in preparation for our more detailed study in Section 5.

Definitions 4.1. The starting position of the cube has opposite vertices at (0, 0, 0) and (1, 1, 1). We
label the vertices 0 = (0, 0, 0), 1 = (1, 0, 0), 2 = (0, 1, 0), 3 = (1, 1, 0), 4 = (0, 0, 1), 5 = (1, 0, 1),
6 = (0, 1, 1), 7 = (1, 1, 1) (see Figure 4.1). The vertex coordinates correspond to their labels in binary.
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3 7

2 6

1 5

0 4

Figure 4.1: The vertex labels of the cube; an unfolding of the vertices onto the plane; the cube
orientation 0312.

The letter r represents a right roll, which from the starting position puts vertices 1, 3, 5 and 7 on the
xy-plane. The letter u represents an up roll, which from the starting position puts vertices 2, 3, 6 and 7
on the xy-plane. The direction of rolls are described as seen from the positive z-direction looking down at
the xy-plane. Hence a right roll is in the positive x-direction and an up roll is in the positive y-direction.

A tumble sequence τ is a word on the alphabet {r, u} representing cube rolls. We read from left to
right, so rrurru represents rolling the cube to the right twice, then up once, then to the right twice, and
then up once. We associate τ with the lattice point (a, b) touched by the upper-right corner of the bottom
face of the cube at the end of the tumble, which we assume to be in the first quadrant by symmetry.

A tumble path is the set of squares touched by the faces of the cube as it rolls out the tumble
sequence.

We label the four diagonals of the cube 0, 1, 2, 3 based on which bottom vertex the diagonal touches.
An orientation of the cube is uniquely determined by the permutation of the four diagonals, so we label
each cube orientation with an element in S4, written in one-line notation. The cube orientation σ0 = 0123
is the identity, the starting position of the cube. The orientation 0312 in means that diagonal 0 is fixed,
diagonal 3 is in the starting position of diagonal 1, diagonal 1 is in the starting position of diagonal 2,
and diagonal 2 is in the starting position of diagonal 3 (see Figure 4.1).

The symmetry group of the cube is isomorphic to S4, the symmetric group on four letters. Applying
r (respectively, u) to a cube corresponds to multiplying its cube orientation by 1230 (respectively, 2310).
As such, we identify

r = 1230

u = 2310.

This identification induces a canonical monoid homomorphism that associates to each tumble sequence
the cube orientation resulting from applying the tumble sequence to the cube from its starting position.
By an abuse of notation, a sequence of the letters r and u may represent a tumble sequence (with no
cancellations) or the associated cube orientation. In the latter case, being considered in S4, we may write
r−1 and u−1 for the inverse permutations or simplify using relations such as r4 = u4 = (r2u)2 = (ur)3 = 1.

Given a line segment between a point p in the unit square [0, 1]2, and a lattice point (a, b) in the
first quadrant, such that the segment contains no interior lattice points, there is a unique corresponding
tumble sequence τ :

Construct the square grid {Z×R} ∪ {R× Z}. When the segment crosses a vertical grid line, record
an r; when the segment crosses a horizontal grid line, record a u. The sequence of the letters r and u is
the corresponding tumble sequence τ .
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We restrict our attention to tumble sequences that correspond to geodesic trajectories on the cube.
In Section 5, we take the starting point p to be the origin. In Section 6, we consider a general starting

point in the unit square.

Lemma 4.2. To tumble a cube from (0, 0) so that its upper-right corner touches the lattice point (a, b)
with b < a, following a geodesic trajectory with no interior lattice points, the tumble sequence is a word
of length a + b − 2, consisting entirely of rs except with us in positions

⌈
a
b i
⌉

+ i − 1 for i = 1, . . . , b − 1.
In the symmetric case where b > a, the roles of r and u, and of a and b, are reversed.

Proof. This is easily derived by the same logic as for drawing straight lines on a computer screen, pixel
by pixel.

Corollary 4.3. Every geodesic tumble sequence is a palindrome.

Proof. This follows from the half-turn symmetry of the axis-parallel rectangle whose opposite vertices are
(0, 0) and (a, b).

As we roll the cube along the tumble path, we can label the vertices that touch the xy-plane (see
Figure 4.2).

Proposition 4.4. In each 2-by-1 or 1-by-2 rectangle that makes up the tumble path, opposite vertex labels
sum to 7 (see Figure 4.2).

Proof. Vertices that appear opposite each other in the 2-by-1 rectangles that make up the tumble path
are opposite ends of diagonals of the cube. Because we used the cube’s coordinates to label the vertices,
opposite ends of diagonals have x-, y- and z-coordinates that each sum to 1. Since each coordinate sums
to 1, the binary expansion of the sum is 111, or 7.

0 1

2 3

5

7

4

6

23 0

4

1

5

Figure 4.2: The tumble path for the tumble sequence rrurr, corresponding to the diagonal geodesic.

Proposition 4.4 gives an easy way to move through a tumble path: if the vertex labels in Figure 4.2
other than the initial four (in bold) are erased, they can all be filled back in by using Proposition 4.4.

The proof of the following observation is trivial and omitted.

Observation 4.5. If a given tumble word is equivalent to the identity then its mirror reverse is also
equivalent to the identity.

5 Vertex-to-vertex paths on the cube

In this section, we examine vertex-to-vertex paths on the cube that each correspond to a segment from
the origin (0, 0) to a lattice point (a, b) in the first quadrant. In Figure 5.1, each “sight line” is drawn
starting from a lattice point visible2 from the origin and extending to “block” other lattice points from
view of the origin. It is helpful to put a structure on the visible lattice points, called the Stern–Brocot
tree.

2visible: Definition 2.1. We think of “visibility” as if standing at the corner of an orchard, with trees placed at grid
points, as in Figure 5.1.
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Figure 5.1: Sight lines in an orchard.

Definition 5.1 (Stern–Brocot tree). Consider the set V = {(a, b) ∈ N×N | gcd(a, b) = 1} of lattice
points in the first quadrant that are visible from the origin.The Stern–Brocot tree T is a binary tree
structure on V , recursively defined as follows. For each t ∈ V , let t+ and t− denote its positive parent
and negative parent, respectively. For the root node g := (1, 1), let g+ := (0, 1) and g− := (1, 0).

For t ∈ V with t+ defined, let its positive child t+ be given by t+ = t+t+. The positive and negative
parents of t+ are given by (t+)+ = t+ and (t+)− = t, respectively. Similarly, for t ∈ V with t− defined,
its negative child t− is given by t− = t+ t−, whose positive and negative parents are given by (t−)+ = t
and (t−)− = t−, respectively. Note that t = t− + t+ for t ∈ V .

For each non-root t ∈ V , draw a positive edge (t, t+) and a negative edge (t, t−). This establishes
the binary tree structure T . Note that for a non-root t ∈ V , precisely one of (t+, t) and (t−, t) is an edge
in T . By an abuse of notation, we write t ∈ T instead of t ∈ V .

The depth of an element t ∈ T is the distance d(t) in the tree from the root g to t.

Note that g+ = (0, 1) and g− = (1, 0), the parents of the root node, are not strictly considered to be
part of the tree T . Let T := T ∪ {g+, g−}, a “completion” which is useful for the recurrences discussed
below. Figure 5.2 shows the first five levels of the Stern–Brocot tree T , depths 0 through 4, along with
the parents of the root; when tracing from left to right, positive edges slant upwards and negative edges
slant downwards.

Definition 5.2. To each t ∈ T , we associate the following:

• τ(t) = the tumble sequence associated to t, a word on alphabet {r, u}.

• σ(t) = the associated cube orientation, an element of S4.

For t = (a, b) ∈ T , as gcd(a, b) = 1, the line segment from (0, 0) to (a, b) does not contain any other lattice
points, so there is a unique tumble sequence τ(t) associated to t (see Figure 5.3).

Tumbling the cube according to τ(t) results in the cube orientation element σ(t) ∈ S4.

Definition 5.3. If (t+, t) are adjacent, the positive branch of t is the set of vertices b+(t) := {s ∈ T :
s+ = t+} that are positive descendants of t. Analogously, if (t−, t) are adjacent, the negative branch is
given by b−(t) := {s ∈ T : s− = t−}. For any non-root t ∈ T , precisely one of b+(t) and b−(t) is defined,
which we denote b(t) for convenience.

For example, the positive branch b+(r) of r is {rur, rurur, rururur, . . . } and the negative branch b−(r)
is not defined as r is a negative child (see Figure 5.3).

We include the following standard result regarding the Stern–Brocot tree for completeness. For t, t′ ∈
T , let P (t, t′) denote the parallelogram with vertices (0, 0), t, t′, and t+ t′.
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(0, 1)

g = (1, 1)

(1, 2)

(1, 3)

(1, 4)
(1, 5)

(2, 7)

(2, 5)
(3, 8)

(3, 7)
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Figure 5.2: The Stern–Brocot tree showing depths 0, 1, 2, 3 and 4.
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Figure 5.3: The Stern–Brocot tree showing tumble sequences.

8



Lemma 5.4. Let t ∈ T . The parallelograms P (t, t+) and P (t, t−) contain no lattice points in their
interiors.

Proof. By Pick’s theorem, if the area of the lattice polygon P (t, t′) is 1, then P (t, t′) contains no interior
lattice points (and no lattice points on the boundary besides its four vertices). For t = (x, y) and
t′ = (x′, y′), let 〈t, t′〉 = xy′ − yx′. Note that 〈·, ·〉 is a skew-symmetric bilinear form, and |〈t, t′〉| is the
area of the parallelogram P (t, t′). It suffices to prove that |〈t, t+〉| = |〈t, t−〉| = 1.

We prove this by induction on the depth d(t). The base case where t is the root g = (1, 1) is trivial.

t+

s := (t+)−

s+ t+

t− = s+ 2t+

t = s+ 3t+

t−

t+

Figure 5.4: The subtree referenced in Lemma 5.4, with k = 3.

Suppose t is not the root g. Without loss of generality, suppose t is a positive child, so t is adjacent
to t− but not to t+ (see Figure 5.4). Let s := (t+)− be the negative child of the positive parent of t. By
definition, t is the kth positive child of s for some k ≥ 1, and so t = s+ kt+. By bilinearity, we get〈

t, t+
〉

=
〈
s+ kt+, t+

〉
=
〈
s, t+

〉
+ k
〈
t+, t+

〉
=
〈
s, t+

〉
.

As d(s) < d(t), by induction we have |〈s, s+〉| = 1. Because s+ = t+, we obtain |〈t, t+〉| = 1, as desired.
Using skew-symmetry, we obtain〈

t, t−
〉

=
〈
s+ kt+, s+ (k − 1)t+

〉
= 〈s, s〉+ k

〈
t+, s

〉
+ (k − 1)

〈
s, t+

〉
+ k(k − 1)

〈
t+, t+

〉
= −k

〈
s, t+

〉
+ (k − 1)

〈
s, t+

〉
= −

〈
s, t+

〉
,

so |〈t, t−〉| = |〈s, t+〉| = 1, as desired.

We use the result above to derive a recurrence of tumble sequences. Note that τ(t+) and τ(t−) are
both defined if and only if t /∈ b+(g) ∪ b−(g).

Lemma 5.5 (Tumble recurrence). Let t ∈ T and g the root. If t /∈ b+(g) ∪ b−(g), then

τ(t) = τ(t+)ruτ(t−) = τ(t−)urτ(t+).

Proof. We prove the first equality. The second is similar and follows from symmetry.
Without loss of generality, suppose t is a positive child, so t is adjacent to t− but not to t+. As

(t−)+ = t+, by Lemma 5.4, the parallelogram P := P (t−, t+) contains no interior lattice points.
Let t+ = (a, b). Let a′, b′ ∈ R such that (a, b′) and (a′, b) lie on the geodesic line segment L from (0, 0)

to t; note that a < a′ < a+ 1 and b− 1 < b′ < b (see Figure 5.5).
For v, v′ ∈ R2, let Lv′

v denote the (directed) line segment from v to v′ and, by an abuse of notation,
write τ(Lv′

v ) for the sequence of the letters r and u corresponding to crossing a vertical and a horizontal
edge, respectively, while traversing along this directed line segment.

By breaking Lt
(0,0) at points (a, b′) and (a′, b), we get

τ(t) = τ(Lt
(0,0)) = τ(L

(a,b′)
(0,0) ) · r · τ(L

(a′,b)
(a,b′)) · u · τ(Lt

(a′,b)),
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where the r and the u correspond to crossing a vertical edge at (a, b′) and a horizontal edge at (a′, b),

respectively. Now L
(a′,b)
(a,b′) crosses no edges as it is a segment inside a lattice square. It remains to calculate

the other two tumble sequences.

Consider the homotopy F (z) = L
(a,zb+(1−z)b′)
(0,0) of line segments from F (0) = L

(a,b′)
(0,0) to F (1) = L

(a,b)
(0,0).

Since there are no lattice points in the parallelogram P , and we are moving an endpoint along an edge,
τ ◦ F (z) is constant for z ∈ [0, 1], and so

τ(L
(a,b′)
(0,0) ) = τ(L

(a,b)
(0,0)) = τ(t+).

Similarly, the homotopy G(z) = Lt
(za+(1−z)a′,b) shows the first equality in

τ(Lt
(a′,b)) = τ(Lt

(a,b)) = τ(Lt−t+
(0,0) ) = τ(Lt−

(0,0)) = τ(t−),

where the second equality follows from invariance of τ under lattice translation. This completes the
proof.

t = (3, 2)

t+ = (a, b)

(a, b′)

(a′, b)

Figure 5.5: The homotopy construction in Lemma 5.5 for t = (3, 2), with t+ = (a, b) = (1, 1).

Definition 5.6. Extend σ to the parents of the root g ∈ T by formally defining σ(g+) = r−1 and
σ(g−) = u−1, where r = 1230 and u = 2310 are considered as elements of S4 (see Definition 4.1).

Remark 5.7. Since τ(t) 7→ σ(t) is a monoid homomorphism, σ(t) enjoys the above recurrence, restated
as a corollary below. In fact, by our judicious definition of σ(g+) and σ(g−), the recurrence works for all
t ∈ T , i.e., for t ∈ b+(g) ∪ b−(g) as well. We choose not to do this for τ for the following reason. As τ
maps to words, i.e., elements of the free monoid, on the formal symbols {r, u}, technically, r−1 and u−1

do not make sense in this setting.

Corollary 5.8 (Orientation recurrence). For t ∈ T , we have

σ(t) = σ(t+)ruσ(t−) = σ(t−)urσ(t+).

Proof. For t /∈ b+(g) ∪ b−(g), the recurrence formula follows immediately from that of Lemma 5.5. Oth-
erwise, without loss of generality, suppose t ∈ b+(g). For t = (1, k + 1) the kth positive child of g, the
geodesic from (0, 0) to (1, k + 1) crosses k horizontal edges, so σ(t) = uk. As the recurrence for t = g is
immediate, we assume k > 0. We have σ(t−) = uk−1 as above and σ(t+) = σ(g+) = r−1 by definition, so

σ(t+)ruσ(t−) = r−1ruuk−1 = uk = σ(t),

as desired. The second equality is analogous.

Proposition 5.9. The sequence of cube orientations associated to a branch is periodic with period at
most 4.

10



Proof. The sequences of cube orientations of the two branches b+(g) and b−(g) starting at the root are
{uk}k and {rk}k, respectively, and so are 4-periodic. Otherwise, let t ∈ T be at depth at least 1 and
consider the branch b(t). Without loss of generality, assume b(t) is a positive branch. Let tk be the kth
positive child of t = t0, which are precisely the elements of b(t) in sequence. We have

σ(tk) = σ(tk−1)ruσ(t−) = σ(t)[ruσ(t−)]k

by Corollary 5.8 and induction. Since ruσ(t−) is an element of S4, its order is at most 4, and hence the
sequence {σ(tk)}k is periodic with period at most 4.

Definition 5.10. Each edge of the tree contains a parent t on the left endpoint, and either the positive
child t+ or the negative child t− on the right endpoint. We label each edge, and thus each parent-child
pair, by whether the child is positive or negative: (σ(t), σ(t+),+) or (σ(t), σ(t−),−), respectively. Each
edge is thus associated to an element of S4 × S4 × {+,−}, called its label.

Lemma 5.11. Each edge label uniquely determines the labels of its two child edges.

Proof. Without loss of generality, consider a positive edge (σ(s), σ(t),+). Since s, t, and t+ are consecutive
elements on the same branch, the cube orientations are x, xy, xy2 for some x, y ∈ S4, and hence we have

σ(t+) = σ(t)σ(s)−1σ(t).

On the other hand, as (t−)+ = t and (t−)− = s, we have

σ(t−) = σ(t)ruσ(s)

by Corollary 5.8, as desired.

Definition 5.12. Let S = {σ(t) ∈ S4 | t ∈ T} be the subset of cube orientations that occur in T , and let
E ⊆ S4 × S4 × {+,−} be the edge labels that occur.

Lemma 5.13. We have |S| = 9 and |E| = 54. In particular, we have

S = {0123, 0213, 1032, 1230, 2301, 2310, 3012, 3120, 3201}.

Proof. Starting from the two root edges, we may recursively compute all child edges to some depth. The
proof of Lemma 5.11 states clearly how to compute the edge labels of its two child edges. Let E′ be the
labels of edges that occur by depth 7. By direct computation, we have |E| ≥ |E′| = 54. Appendix A lists
the labels of the two child edges for each edge label in E′. One can check that all the child edge labels
are in E′. This proves that E = E′, as desired. Reading the cube orientations occurring in E yields the
9 orientations in S.

Remark 5.14. Alternatively, the above computation can be confirmed simply by calculating the tree to
depth 8 and observing that no new edge labels occur past depth 7.

Because the cube orientations 1320, 2130, and 3210 are not in S, there are no geodesics ending at
vertex 0.

Corollary 5.15. The cube does not admit geodesic loops starting and ending at the same vertex.

Let A be a 54 × 54 matrix, with rows and columns indexed by E. For e, f ∈ E, the row e column f
entry of A is given by

Aef =

{
1/2 if f is a child of e,

0 otherwise.

Let 1 = (1, 1, . . . , 1). Note that A1T = 1T since each row sums to 1. By direct computation (see
Appendix A), each column sums to 1, and so

1A = 1.

In other words, π = 1
541 is a stationary distribution.
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Lemma 5.16. Let M = lim
k→∞

Ak. The limit exists and M = 1π.

Proof. By direct computation, A has (left) eigenvalue 1 with multiplicity 1, so the underlying directed
graph is strongly connected. All other eigenvalues have absolute values strictly less than 1, so the system
is aperiodic. The result follows.

In fact, regardless of the starting state, the distribution converges to the unique stationary distribu-
tion π, because A is a regular stochastic matrix and π is a steady-state vector for A, so π is the unique
attracting long-term state of the system.

Theorem 5.17. In the limit, the proportions for the cube orientations and associated vertices are as
shown in the following table. Vertex 7 thus has a frequency of 12/54.

σ vertex frequency
3201 1 8/54
3012 2 8/54
0123 3 6/54
0213 4 8/54
1032 5 6/54
2301 6 6/54
1230 7 4/54
2310 7 4/54
3120 7 4/54

Let b be the 1×54 row vector indexed by E, with a 0 in each entry except for a 1/2 in the two entries
corresponding to the edges between the root g and its two children. For the 7 vertices v ∈ {1, . . . , 7},
let sv be the 54 × 1 column vector indexed by E, with a 0 in each entry except for a 1 in the entry
corresponding to edge labels whose child cube orientation corresponds to vertex v.

Corollary 5.18. At depth k ≥ 1 in the tree T , the frequency of vertex v is given by the number bAk−1sv.
The number of ways of getting there is the number (2b)(2A)k−1sv.

Remark 5.19. Theorem 5.17 shows the frequencies of vertices at a given depth in the Stern–Brocot
tree. This is reasonably well-correlated with the lengths of trajectories from the origin: experimentally,
we computed the frequencies of end vertex labels on lattice points over large square patches of the first
quadrant with a corner at the origin and obtained the same proportions.

6 Face-to-vertex paths on the cube

In the previous section, we considered vertex-to-vertex geodesics. The more general question that we seek
to answer is: Given a point p on a face of the cube and a vertex v, describe all possible geodesics from p
to v. We do not consider paths that pass through vertices before reaching v.

6.1 Visibility of vertices in the square lattice

Given an initial point p = (x, y) ∈ [0, 1)2 in the starting square and an ending vertex (n,m) ∈ Z2
+, the

problem is arguably split into two parts: visibility and vertex determination. We need to know if (n,m)
is in the line of sight of (x, y) before hitting another vertex and, if so, what vertex is on (n,m) following
the tumble path containing the segment starting at (x, y) and ending at (n,m).

For visibility, there is a simple characterization. Recall Definition 3.2 of the denominator pxy.
Setting u = (1, 0) and v = (0, 1), Lemma 3.3 becomes the following.

Lemma 6.1. The point (n,m) is visible from (x, y) if and only if pm−yn−x y ≤
1
n .

If (x, y) = (0, 0), the condition is that the fraction m
n is reduced. If x ∈ Q and y /∈ Q, then the fraction

m−y
n−x is irrational hence the denominator is 0. As such, we have the following special cases:

12



1. If (x, y) = (0, 0) is at the origin, (n,m) is visible if and only if gcd(n,m) = 1.

2. If x ∈ Q and y /∈ Q, or vice versa, (n,m) is visible.3

From a generic starting point, all lattice points are visible.

6.2 Constructing the tumble sequence for a face-to-vertex geodesic

Definitions 6.2. For a lattice point q = (n,m) with 0 ≤ n ≤ m, let c(n,m) denote the convex quadrilat-
eral whose vertices are (1, 0), (0, 0), (0, 1), and (n,m), and let P (n,m) =

(
c(n,m)∩Z2

)
r {(0, 0), (n,m)}

be the set of lattice points in c(n,m) with two points removed.
Associate to each lattice point p = (x, y) ∈ P (n,m) the line pq through p and q. Let `0, `1, . . . , `t+1 be

these lines such that their corresponding slopes are in increasing order. Note that a line `i may contain
multiple lattice points. For i = 0, . . . , t, let zi = zi(n,m) be the region of [0, 1]2 strictly between `i
and `i+1.

We define tumble sequences τi = τi(n,m) inductively for i = 0, 1, . . . , t. Let τ0 = τ0(n,m) be the
tumble sequence consisting of n + m − 2 letters with a u in each position uj = n + m − j − d nj

m−1e for
j = 1, 2, . . . ,m− 1 and an r in each remaining position, as in Lemma 4.2.

Having defined τi−1, we obtain τi from it as follows. For each lattice point (x, y) ∈ P (n,m) on the
line `i, replace the ur in positions x+ y − 1 and x+ y with ru. Call the resulting sequence τi.

Proposition 6.3. For any point in the region zi(n,m), the tumble sequence to the point (n,m) is τi.

Proof. The above construction sweeps out all the geodesics through (n,m) that lie between the geodesic
through (0, 1) and the geodesic through (1, 0). The tumble sequence changes exactly when the geodesic
passes through a vertex, and the change in the tumble sequence is to change ur to ru in the place in the
tumble word corresponding to where the geodesic passed across the vertex.

Example 6.4. We calculate the tumble sequences for the point (5, 3) (see Figure 6.1). By definition, we
have P (5, 3) = {(0, 1), (1, 1), (3, 2), (2, 1), (1, 0)}, where (0, 1) is on line `0, (1, 1) and (3, 2) are on line `1,
(2, 1) is on line `2, and (1, 0) is on line `3. The lines separate [0, 1]2 into three regions z0, z1, and z2.

The tumble sequence τ0(5, 3) has 5 + 3 − 2 = 6 letters. The location of the us are given by u1 =
5 + 3− 1− d 5·1

3−1e = 4 and u2 = 5 + 3− 2− d 5·2
3−1e = 1, so we have

τ0(5, 3) = urrurr.

Next, note that on line `1, there are two lattice points: (1, 1) and (3, 2). To obtain τ1 from τ0, swap the
underlined letters ur ending at positions 1 + 1 = 2 and 3 + 2 = 5:

τ0(5, 3) = urrurr =⇒ τ1(5, 3) = rurrur.

Finally, note that on line `2, there is one lattice point: (2, 1). To obtain τ2 from τ1, swap the underlined
letters ur ending at position 2 + 1 = 3:

τ1(5, 3) = rurrur =⇒ τ2(5, 3) = rrurur.

The tumble sequence for every point in z0(5, 3) is urrurr; the tumble sequence for every point in z1(5, 3)
is rurrur, and the tumble sequence for every point in z2(5, 3) is rrurur.

It is easy to check in Figure 6.1 that these are correct.

3Even if x and y are incommensurable, i.e., x/y /∈ Q, (n,m) could be blocked. For example, for (x, y) = (
√

3/3,
√

3/9 +
1/3), the lattice point (n,m) = (5, 2) is blocked by (2, 1), but y/x =

√
3/3 + 1/3 /∈ Q.
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t = (5, 3)

`0

`1 `2

`3

z0

z1

z2

Figure 6.1: Computing the tumble paths to (5, 3).

7 Further questions

For the regular tetrahedron, Theorem 3.6 gives a description of all the directions, from an arbitrary
starting point, that end at a given vertex of the tetrahedron. We did not do this for the cube, which is
a natural next step. The main ingredient missing is a result analogous to Lemma 3.1, assigning vertex
labels to lattice points for arbitrary starting points. Solving this problem for the other regular polyhedra
(octahedron, icosahedron, and dodecahedron) are also natural extensions of this work.

Another natural direction to extend our work on the cube is to consider geodesics on general rectan-
gular boxes, which do not tile the plane by unfolding.
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A Details for Lemma 5.13

Each row of the table below contains the child edge labels of an edge label in E′.

(σ(s), σ(t), s) ∈ E′ (σ(t), σ(t−),−) (σ(t), σ(t+),+)

(0123, 0213,−) (0213, 0123,−) (0213, 3201,+)
(0123, 0213,+) (0213, 3012,−) (0213, 0123,+)
(0123, 1230,−) (1230, 2301,−) (1230, 0213,+)
(0123, 2310,+) (2310, 0213,−) (2310, 1032,+)
(0123, 3012,+) (3012, 2310,−) (3012, 2301,+)
(0123, 3201,−) (3201, 1032,−) (3201, 1230,+)
(0213, 0123,−) (0123, 0213,−) (0123, 3012,+)
(0213, 0123,+) (0123, 3201,−) (0123, 0213,+)
(0213, 1032,+) (1032, 2310,−) (1032, 3120,+)
(0213, 1230,−) (1230, 3201,−) (1230, 0123,+)
(0213, 2301,−) (2301, 3120,−) (2301, 1230,+)
(0213, 2310,+) (2310, 0123,−) (2310, 3012,+)
(0213, 3012,−) (3012, 2310,−) (3012, 2301,+)
(0213, 3201,+) (3201, 1032,−) (3201, 1230,+)
(1032, 0213,−) (0213, 2301,−) (0213, 2310,+)
(1032, 2310,−) (2310, 0123,−) (2310, 3012,+)
(1032, 3012,−) (3012, 1032,−) (3012, 0213,+)
(1032, 3012,+) (3012, 3201,−) (3012, 1032,+)
(1032, 3120,+) (3120, 3012,−) (3120, 2301,+)
(1032, 3201,+) (3201, 3120,−) (3201, 0123,+)
(1230, 0123,+) (0123, 0213,−) (0123, 3012,+)
(1230, 0213,+) (0213, 0123,−) (0213, 3201,+)
(1230, 2301,−) (2301, 3012,−) (2301, 3201,+)
(1230, 3201,−) (3201, 0213,−) (3201, 2301,+)
(2301, 0213,+) (0213, 1230,−) (0213, 1032,+)
(2301, 1230,+) (1230, 3201,−) (1230, 0123,+)
(2301, 3012,−) (3012, 0123,−) (3012, 3120,+)
(2301, 3120,−) (3120, 1032,−) (3120, 3201,+)
(2301, 3201,−) (3201, 2301,−) (3201, 3012,+)
(2301, 3201,+) (3201, 0213,−) (3201, 2301,+)
(2310, 0123,−) (0123, 3201,−) (0123, 0213,+)
(2310, 0213,−) (0213, 3012,−) (0213, 0123,+)
(2310, 1032,+) (1032, 3012,−) (1032, 3201,+)
(2310, 3012,+) (3012, 1032,−) (3012, 0213,+)
(3012, 0123,−) (0123, 1230,−) (0123, 2310,+)
(3012, 0213,+) (0213, 2301,−) (0213, 2310,+)
(3012, 1032,−) (1032, 3012,−) (1032, 3201,+)
(3012, 1032,+) (1032, 0213,−) (1032, 3012,+)
(3012, 2301,+) (2301, 3120,−) (2301, 1230,+)
(3012, 2310,−) (2310, 0213,−) (2310, 1032,+)
(3012, 3120,+) (3120, 1032,−) (3120, 3201,+)
(3012, 3201,−) (3201, 3120,−) (3201, 0123,+)
(3120, 1032,−) (1032, 0213,−) (1032, 3012,+)
(3120, 2301,+) (2301, 3201,−) (2301, 0213,+)
(3120, 3012,−) (3012, 3201,−) (3012, 1032,+)
(3120, 3201,+) (3201, 2301,−) (3201, 3012,+)
(3201, 0123,+) (0123, 1230,−) (0123, 2310,+)
(3201, 0213,−) (0213, 1230,−) (0213, 1032,+)
(3201, 1032,−) (1032, 2310,−) (1032, 3120,+)
(3201, 1230,+) (1230, 2301,−) (1230, 0213,+)
(3201, 2301,−) (2301, 3201,−) (2301, 0213,+)
(3201, 2301,+) (2301, 3012,−) (2301, 3201,+)
(3201, 3012,+) (3012, 0123,−) (3012, 3120,+)
(3201, 3120,−) (3120, 3012,−) (3120, 2301,+)
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