Homework 33: 11.3 Euler's method

- (1) Consider the differential equation dy/dx = 2x + y with initial point (0,10). The goal is to develop *Mathematica* code to implement Euler's method and solve this problem. Below are some scratch work space to plan for the *Mathematica* coding exercises. You do *not* need to turn in this sheet, but you absolutely should finish these exercises before you start coding.
 - (a) Use $\Delta x = 0.5$ to estimate the value of the function at x = 1.5 using Euler's method. First, write the expressions for slope and "next y" in general; then fill out the table below.

point	slope =	next $y =$

If you do not get 35.5 as your final value, get this part checked before moving on.

(b) We now develop code to implement Euler's method on Mathematica.

Reminder: When we set up a function, we type $f[x_]:=...$ When we refer to it later, we type f[x] without the underscore. Similarly, when we set up a function with two independent variables like the slope function below, we type $m[x_,y_]:=...$ We refer to it later as m[x,y].

(i) Write the code for the Mathematica function m[x_,y_] that computes the slope at the point (x, y).

m[x_,y_]:=

(ii) Write the code for Mathematica function $nextY[x_,y_]$ that takes a current point and finds the next y value using Euler's method. Use the work you did above under "next y =" to guide you. To make this easier to use for any differential equation, write your code as general as possible. In particular, refer to m[x,y] and Δx in the definition of nextY[x_,y_].

 Δx =

- (2) Download hw33.euler.nb from Moodle and follow instructions therein.
- (3) 11.3 # 15a. Do by hand (with a chart like the one above) and turn in as usual.