Homework 33: 11.3 Euler's method

Bring this handout to class with at least (1a) filled out.
(1) Consider the differential equation $d y / d x=2 x+y$ with initial point $(0,10)$. The goal is to develop Mathematica code to implement Euler's method and solve this problem. Below are some scratch work space to plan for the Mathematica coding exercises. You do not need to turn in this sheet, but you absolutely should finish these exercises before you start coding.
(a) Use $\Delta x=0.5$ to estimate the value of the function at $x=1.5$ using Euler's method. First, write the expressions for slope and "next y " in general; then fill out the table below.

point	slope $=$	next $y=$

If you do not get 35.5 as your final value, get this part checked before moving on.
(b) We now develop code to implement Euler's method on Mathematica. Reminder: When we set up a function, we type $f\left[x_{-}\right]:=\ldots$. When we refer to it later, we type $f[x]$ without the underscore. Similarly, when we set up a function with two independent variables like the slope function below, we type $m\left[x_{-}, y_{-}\right]:=\ldots$ We refer to it later as $m[x, y]$.
(i) Write the code for the Mathematica function $m\left[x_{-}, y_{-}\right]$that computes the slope at the point (x, y).

$$
m\left[x_{-}, y_{-}\right]:=
$$

(ii) Write the code for Mathematica function nextY[x_, y_{-}] that takes a current point and finds the next y value using Euler's method. Use the work you did above under "next $y=$ " to guide you. To make this easier to use for any differential equation, write your code as general as possible. In particular, refer to $m[x, y]$ and Δx in the definition of nexty $\left[\mathrm{x}_{-}, \mathrm{y}_{-}\right]$.

```
\Deltax =
nextY[x_,y_]:=
```

(2) Download hw33.euler.nb from Moodle and follow instructions therein.
(3) 11.3 \# 15a. Do by hand (with a chart like the one above) and turn in as usual.

