Encryption with a Deck of Cards

Overview:

This assignment is to be done individually. You can share ideas and thoughts with other people in the class,
but you should code your own assignment.

For this assignment, we are going to encrypt a string of text using a deck of cards. This technique is considerably
harder to break than some basic encryption techniques (such as the Caeser Cipher) yet it’s still relatively
strightforward. We’ll be assuming that we have just two suits (say, hearts and spades) from a deck of cards,
plus the two jokers, just to keep things simple. Further, let’s assume that the values of the 26 suit cards are
1 to 26 (Ace through King of hearts, followed by Ace through King of spades), that the “A” joker is 27, and
that the “B” joker is 28. Thus, 15 represents the 2 of spades. Now that you’ve got the idea, note that because
we are doing this in a computer, note that the actual card names are irrelevant; really, we just need to track
a list of numbers from 1 through 28. Well, we do need to know which ones are considered jokers (27 and 28).

The main part of this technique is the generation of the keystream values. (They will be used to encrypt or
decrypt our messages.) Here are the steps used in our version of this algorithm, assuming that we start with
a list of the values from 1-28 as described above:

1. Find the A joker (27). Exchange it with the card beneath (after) it in the deck, to move the card down
the deck by one position. (What if the joker is the last card in the deck? Imagine that the deck of cards
is continuous; the card following the bottom card is the top card of the deck, and you’d just exchange
them.)

2. Find the B joker (28). Move it two cards down by performing two exchanges.

3. Swap the cards above the first joker (the one closest to the top of the deck) with the cards below the
second joker. This is called a triple cut.

4. Take the bottom card from the deck. Count down from the top card by a quantity of cards equal to the
value of that bottom card. (If the bottom card is a joker, let its value be 27, regardless of which joker it
is.) Take that group of cards and move them to the bottom of the deck. Return the bottom card to the
bottom of the deck.

5. Look at the top card’s value (which is again 1-27, as it was in the previous step). Put the card back on
top of the deck. Count down the deck by that many cards, starting with the top card. Record the value
of the NEXT card after that in the deck, but don’t remove it from the deck.

6. If the card found in the previous step is not a joker, you’ve got the next value in the keystream: it’s the
card you found. However, if ythe card you found is a joker, leave the deck precisely as it is, and start the
process all over again from step 1. Do this as many times as necessary until you end up at this step with
a card that isn’t a joker.

The value that you recorded in the last step is one value of the keystream, and will be in the range 1 — 26,
inclusive (to match with the number of letters in the alphabet). To generate another value, we take the deck
as it is after the last step and repeat the algorithm. We need to generate as many keystream values as there
are letters in the message being encrypted or decrypted.


https://en.wikipedia.org/wiki/Caesar_cipher

As usual, an example will really help make sense of the algorithm. Let’s say that this is the original ordering
of our half-deck of cards:

147 10 13 16 19 22 25 28 3 6 9 12 15 18 21 24 27 2 5 8 11 14 17 20 23 26

Step 1: Swap 27 with the value following it. So, we swap 27 and 2:
147 10 13 16 19 22 25 28 3 6 9 12 15 18 21 24 2 27 5 8 11 14 17 20 23 26

Step 2: Move 28 two places down the list. It ends up between 6 and 9:
147 10 13 16 19 22 25 3 6 28 9 12 15 18 21 24 2 27 5 8 11 14 17 20 23 26

Step 3: Do the triple cut. Everything above the first joker (28 in this case) goes to the bottom of the deck,
and everything below the second (27) goes to the top:
58 11 14 17 20 23 26 28 9 12 15 18 21 24 2 27 1 4 7 10 13 16 19 22 25 3 6

Step 4: The bottom card is 6. The first 6 cards of the deck are 5, 8, 11, 14, 17, and 20. They go just ahead of
6 at the bottom end of the deck:

23 26 28 9 12 15 18 21 24 2 27 1 4 7 10 13 16 19 22 256 3 5 8 11 14 17 20 6

Step 5: The top card is 23. Thus, our generated keystream value is the 24" card, which is 11.

Self Test: What is the next keystream value? | The answer is provided at the end of this document.

OK, so what do you do with all of those keystream values? The answer depends on whether you are encoding
a message or decoding one.

To encode a message, verify that all input characters are capital letters, and that there are no spaces. If they
aren’t, quit and issue an error message. Convert the letters to numbers (A=1, B=2, etc.). Use the above
algorithm to generate the same number of values as are in the message. For each character in the message,
take its number, and add to it the number in the keystream corresponding to its position. If the answer is
greater than 26, subtract 26 from it. Convert the numbers back to letters, and you’re done.

Decryption is just the reverse of encryption. Start by converting the message to be decoded to numbers, again
doing error checking to make sure that it contains all capital letters and no spaces. Using the same card
ordering as was used to encrypt the message originally, generate enough keystream values. (Because the same
starting deck of cards was used, the same keystream will be generated.) Subtract the keystream values from
the message numbers. If a number comes up less than 1, add 26 to it. Finally, convert the numbers to letters
and read the message.

Let’s give it a try. The message to be sent is this:
INSANE

Next, convert the letters to numbers:

I N S A N E
91419 114 5

Rather than actually generating a sequence of 6 keystream values for this example, let’s just pretend that we
did:



17146 13 1

Just add the two groups together pairwise, subtracting if over 26: (Note that this isn’t quite the result that
the operator % would give you in Java.)

91419 114 5
+1 714 613 1

1021 7 7 1 6

And convert back to letters:
JUGGAF

Here’s how the recipient would decrypt this message. Convert the encrypted message’s letters to numbers,
generate the same keystream (by starting with the same deck ordering as was used for the encryption), and
subtract the keystream values from the message numbers. Again, to deal with values less than 1, just add 26
to the answer if it is negative.

1021 7 7 1 6
-1 714 613 1

914 19 114 5

Finally, convert the numbers to letters, and viola!

914 19 114 5
I N S A N E



Assignment:

Only part of this assignment is required: the part about generating the keystream of values. In other words,
the piece that you must do is the algorithm for rearranging the deck, and producing a sequence of values as
specified. It will be optional if you wish to use that keystream to contribute to a full-fledged encryption and
decryption algorithm.

The Deck

Create a class called Deck that maintains the list of numbers (1-28) in a doubly-linked circular linked list.
A doubly-linked list is one where each node has two pointers: one points to the next node, and another points
to the previous one. A circular linked list is one where the very last item in the list points to the first one. It
turns out the deck rearranging algorithm described above is more straightforward if your deck can be thought
of as one big circle of cards that you can flip through in either direction. The actual ordering of the numbers
itself should be read from a file whose name is passed into your constructor, which contains the numbers in
some given order, on a single line, separated by spaces. Your class should contain the following methods:
Deck(String filename)

Your constructor should take one parameter, which is the name of the file to read the order of the cards from.
void print(int n)

This method should bring out n numbers from your deck. n is an integer greater than or equal to 1, though it
can be larger than 28. If it is, your deck should start over from the top and keep printing. Make sure to print
out your items efficiently: you shouldn’t be doing something awful like “find the first item in the list, print it,
then start at the beginning and find the second item, print it, then start at the beginning and find the third
item, print it, etc.”

void printBackwards(int n)

This method works just like print, except that it starts at the last number in the deck, and works backwards.
Like print, n can be larger than 28, in which case it will wrap around.

void swapJokerA()

This method implements step 1 of the encryption algorithm, moving a 27 joker down one position.
void swapJokerB()

This method implements step 2 of the encryption algorithm, moving a 28 joker down two positions.
void tripleCut()

This method implements step 3 of the encryption algorithm, performing a triple cut.

void moveToBottom()

This method implements step 4 of the encryption algorithm, moving a group of cards to the bottom of the
deck (above the bottom card).

int countDown()

This method implements step 5 of the encryption algorithm, counting down from the deck and returning the
value of a particular card in the deck.

int nextKeyValue()



This method wraps up the whole process. It calls the above methods representing steps 1-5. If countDown
returns something other than a joker, it returns that value; otherwise, it repeats the whole process until
countDown returns a value which isn’t a joker.

These methods are where your circular linked list really pays off! I want you to write your code efficiently
and directly, taking advantage of the fact that this is a linked list. For example, when you move a chunk of
cards from one portion of the deck to another, you should only be moving the minimum number of pointers
necessary to do the job. Don’t move the cards one-by-one, or something inefficient like that.

Your code must run with this DeckTester.javal test code. If you have renamed methods or have
other bugs which cause DeckTester not to run, you will lose significant points.

public class DeckTester {
public static void main(String[] args) {

Deck cards = new Deck("deck.txt");
cards.print(3);
cards.print(30);
cards.printBackwards(30);
System.out.println(cards.nextKeyValue());
System.out.println(cards.nextKeyValue()) ;
cards.swapJokerA();
cards.swapJokerB();
cards.tripleCut();
cards.moveToBottom() ;
System.out.println(cards.countDown()) ;
System.out.println(cards.nextKeyValue());
cards.print(30);
cards.printBackwards(30);

If deck.txt looks like this:
147 10 13 16 19 22 256 28 3 6 9 12 15 18 21 24 27 2 5 8 11 14 17 20 23 26

then the above code should print out

147

147 10 13 16 19 22 25 28 3 6 9 12 15 18 21 24 27 2 5 8 11 14 17 20 23 26 1 4
26 23 20 17 14 11 8 5 2 27 24 21 18 15 12 9 6 3 28 256 22 19 16 13 10 7 4 1 26 23
11

9

23

7

22 256 3581112 21 24 28 2 1 23 18 27 17 20 6 15 26 9 4 7 10 13 16 19 14 22 25
14 19 16 13 10 7 4 9 26 156 6 20 17 27 18 23 1 2 28 24 21 12 11 8 5 3 25 22 14 19

We will test your code for further key values, as well as for different deck starting arrangements.
You must use a doubly-linked circular linked list. Do not use any pre-existing linked list code, apart from what
I or the textbook provide. Do not create or use a separate LinkedList class, as this is what your Deck class

is for.

Part 1: Implement the constructor, print, and printBackwards.


DeckTester.java

Part 2: Implement nextKeyValue.

Completely optional additions, for no credit, but lots of fun: Get the actual encryption / decryption
going. Write a separate class called Encrypt, with a main that reads a string of text from a file called
input.txt. (It contains all capital letters, no spaces.) Encrypt the text using the above algorithm. Likewise,
create a class called Decrypt, that works in exactly the same way as described above, except that it decrypts
a string instead of encrypting it. When doing the arithmetic on the letters, use ASCII values to keep your
code brief. Don’t do a massive 26-way if-statement converting A to 1, B to 2, etc.)

Answer to the Self Test: After Step 1:

23 26 28 9 12 15 18 21 24 2 1 27 4 7 10 13 16 19 22 256 3 5 8 11 14 17 20 6
After Step 2:

23 26 9 12 28 15 18 21 24 2 1 27 4 7 10 13 16 19 22 256 3 5 8 11 14 17 20 6
After Step 3:

4 7 10 13 16 19 22 256 3 5 8 11 14 17 20 6 28 15 18 21 24 2 1 27 23 26 9 12
After Step 4:

14 17 20 6 28 15 18 21 24 2 1 27 23 26 9 4 7 10 13 16 19 22 256 3 5 8 11 12
After Step 5:

The deck is the same as it was after step 4. The 15" card, the next keystream value, is 9.



