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The Problem
Trying to make a recommendation                                                           
from thousands of choices

Only understand users’ preferences                                                                  
as we recommend them shows

 MyHouse Friends

Tags that identify what shows have                                                                                     
in common
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Introduction to our Project
Replicating a paper that tries to solve this problem: A Gang of Bandits

Why replicate papers?
● Ensure papers’ processes are repeatable
● Validate findings as basis for new research in the future
● Avoid replication crises faced by other fields



Basic Multi-Armed Bandit Problem
The user might enjoy an episode 
from a series based on some set 
probability

Update the probabilities 
associated with that series

Choose a series and observe 
whether or not the user enjoyed 
the episode



Multi-Armed Bandit - Exploration Vs. Exploitation
How does the algorithm balance the need to exploit and explore?

Score = expected reward + UCB

α: exploration factor



Terminology
Learner: An instance of a MAB algorithm that is 
making recommendation decisions

Context: Represents a recommendation (i.e. 
song, website, etc…) that a learner can choose

● Represented as a vector - this ‘summarizes’ the context 
information

Mountain Mamas

Mom and Me

Flip or Flop Vegas

User: Who the learner is recommending to

Reward: Measure of how good a 
recommendation decision is



Formalization of the problem
There are T time steps and K possible contexts at each time step t

At each t:

● The learner chooses one of the possible contexts
● The learner receives a reward r
● The learner updates its knowledge

○ What contexts it has chosen and what the subsequent rewards were
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Related Work - Contextual Bandits1

We are once again recommending a 
series to a user

● But each series is comprised of a 
list of tags: a political, comedy 
released in the 2000’s

● If the user enjoyed the series, 
update the user so that similarly 
tagged series will have higher 
scores in the future

1 Chu, Wei, et al..  "Contextual bandits with linear payoff 
functions." 2011.



Related Work - Network Based Bandits1

There is a network in which the 
HGTV user has three friends

Choose a series for the HGTV user 
and observe the reward

Update not only the HGTV user, 
but also the connected friends

1 Swapna Buccapatnam, Atilla Eryilmaz, and Ness B. Shroff. 
“Multi-armed Bandits in the Presence of Side Observations in 
Social Networks”, 2013.
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Overview of A Gang of Bandits

 LinUCB

GOB.Lin



LinUCB[2]

Contextual MAB (MAB problem with expert advice)

Primary point of comparison for GOB.Lin

Maintains a bias vector b and a context matrix M

[2] Chu, Li, Reyzin, Schapire

● b: remembers how well the learner has done with certain contexts

● M: remembers how many times the learner has chosen certain 
contexts



Choosing an Action

Learner observes K context vectors (xk)

Which to 
choose?

Learner constructs a vector w = M-1 b

● Approximates the theoretical linear function 
from context vectors to context payoffs



Calculating score
For each context vector, it calculates a score:

Confidence bound CB

I haven’t seen this before. I’m sure 
the user will love it!

Expected payoff P



Updating Knowledge

M: Adjust by outer product of context vector

A

So this context 
is good huh?

0.9

b: Adjust by context vector scaled by payoff

This updating leads to more 
accurate scores in future 
choosing rounds!

From chosen context xt receive a payoff at



Implementations
LinUCB-SIN

● The learner maintains only one context matrix and 
bias vector for all users

● Advantage: It learns quickly and accurately if users 
are similar

LinUCB-IND

● The learner maintains a separate context matrix 
and bias vector for each user

● Advantage: It learns accurately if users are different



GOB.Lin



Incorporating the Social Network



“Spread” Context Vector



Choosing an Action
Observe K context vectors

For each context vector, calculate a score:

● Sum of confidence bound CB and projected payoff P



Calculating a Score

Expected Payoff P Confidence Bound CB



Updating Knowledge
M: add outer product of modified vectors -- encodes which context was seen 
with which user, and spreads the learned information across multiple blocks

b: add modified context vector multiplied by payoff (same as LinUCB)



Issues With GOB.Lin
Relies on a matrix inversion scaling with the number of users (O(n2))

How to solve matrix inversion problem?

● Clustering to reduce number of users!

Two methods for using clustering

● GOB.Lin BLOCK
● GOB.Lin MACRO



GOB.Lin BLOCK



GOB.Lin MACRO
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Data-Sets 
4Cliques

● Small Artificial dataset

Last.fm

● Data from music streaming streaming service
● Fewer but more popular items (artists)

Delicious

● Data from social bookmarking web service 
● Many moderately popular items (websites)



4Cliques
Graph starts as 4 cliques of 25 nodes each

Every node i in a clique is assigned the same 
preference vector ui

Then add Graph Noise Graph
Noise



4Cliques
At every timestep, learner picks a random user 
and generates 10 random context vectors

Payoffs are calculated ai(x) = ui
Tx + ε where x is the 

chosen context and ε is the payoff noise uniformly 
distributed in a bounded interval around 0



4Cliques’ Original Results
GOB.Lin robust to payoff noise

LinUCB not impacted by graph 
noise



4Cliques
Our Results Their Results



Last.fm and Delicious
25 Random Contexts

Context with 
non-zero payoff

USER

1 Random User



Delicious
Our Results Their Results



LastFM
Our Results Their Results
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Successes
We implemented two linear bandit algorithms, as well as their variations

● LinUCB (Sin and Ind)
● GOB.Lin

○ Additionally implemented Block and Macro

On every dataset, our algorithms demonstrated the ability to learn

● This shows that the algorithms could be applicable to other 
recommendation-based scenarios



Challenges and Next Steps
GOB.Lin on Last.fm and Delicious was prohibitively slow and memory 
intensive

● We could not obtain results for GOB.Lin on these datasets

Ambiguity in paper

● Which α (exploration rate) to use
● How data from Last.fm and Delicious was processed

○ TFIDF
○ PCA
○ Clustering



Main Takeaways of Replication
Our results on Delicious and Last.fm differ from the researchers’ findings, but 
follow the same trends

● On Delicious, Block outperforms Macro
● On Last.fm, Macro outperforms Block
● Discrepancy in results may mean that Macro and Block are not  as robust 

to changes in the dataset as the researchers make them out to seem

Our findings on 4Cliques validate what the researchers found

● This acts to bolster the foundation for more research to be conducted



Thank yous
Anna Rafferty’s server :(

Mike Tie
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Anna Rafferty

- Fall term
- Winter term pre-tenure
- Winter term tenured
- All future Anna Raffertys
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Questions?


