
A Gang of
Bandits

Will Knospe, Paul Reich,
Bryce Bern, Dawson d’Almeida

The Problem
Trying to make a recommendation
from thousands of choices

Only understand users’ preferences
as we recommend them shows

 MyHouse Friends

Tags that identify what shows have
in common

Road Map

Introduction to our Project
Replicating a paper that tries to solve this problem: A Gang of Bandits

Why replicate papers?
● Ensure papers’ processes are repeatable
● Validate findings as basis for new research in the future
● Avoid replication crises faced by other fields

Basic Multi-Armed Bandit Problem
The user might enjoy an episode
from a series based on some set
probability

Update the probabilities
associated with that series

Choose a series and observe
whether or not the user enjoyed
the episode

Multi-Armed Bandit - Exploration Vs. Exploitation
How does the algorithm balance the need to exploit and explore?

Score = expected reward + UCB

α: exploration factor

Terminology
Learner: An instance of a MAB algorithm that is
making recommendation decisions

Context: Represents a recommendation (i.e.
song, website, etc…) that a learner can choose

● Represented as a vector - this ‘summarizes’ the context
information

Mountain Mamas

Mom and Me

Flip or Flop Vegas

User: Who the learner is recommending to

Reward: Measure of how good a
recommendation decision is

Formalization of the problem
There are T time steps and K possible contexts at each time step t

At each t:

● The learner chooses one of the possible contexts
● The learner receives a reward r
● The learner updates its knowledge

○ What contexts it has chosen and what the subsequent rewards were

Road Map

Related Work - Contextual Bandits1

We are once again recommending a
series to a user

● But each series is comprised of a
list of tags: a political, comedy
released in the 2000’s

● If the user enjoyed the series,
update the user so that similarly
tagged series will have higher
scores in the future

1 Chu, Wei, et al.. "Contextual bandits with linear payoff
functions." 2011.

Related Work - Network Based Bandits1

There is a network in which the
HGTV user has three friends

Choose a series for the HGTV user
and observe the reward

Update not only the HGTV user,
but also the connected friends

1 Swapna Buccapatnam, Atilla Eryilmaz, and Ness B. Shroff.
“Multi-armed Bandits in the Presence of Side Observations in
Social Networks”, 2013.

Road Map

Overview of A Gang of Bandits

 LinUCB

GOB.Lin

LinUCB[2]

Contextual MAB (MAB problem with expert advice)

Primary point of comparison for GOB.Lin

Maintains a bias vector b and a context matrix M

[2] Chu, Li, Reyzin, Schapire

● b: remembers how well the learner has done with certain contexts

● M: remembers how many times the learner has chosen certain
contexts

Choosing an Action

Learner observes K context vectors (xk)

Which to
choose?

Learner constructs a vector w = M-1 b

● Approximates the theoretical linear function
from context vectors to context payoffs

Calculating score
For each context vector, it calculates a score:

Confidence bound CB

I haven’t seen this before. I’m sure
the user will love it!

Expected payoff P

Updating Knowledge

M: Adjust by outer product of context vector

A

So this context
is good huh?

0.9

b: Adjust by context vector scaled by payoff

This updating leads to more
accurate scores in future
choosing rounds!

From chosen context xt receive a payoff at

Implementations
LinUCB-SIN

● The learner maintains only one context matrix and
bias vector for all users

● Advantage: It learns quickly and accurately if users
are similar

LinUCB-IND

● The learner maintains a separate context matrix
and bias vector for each user

● Advantage: It learns accurately if users are different

GOB.Lin

Incorporating the Social Network

“Spread” Context Vector

Choosing an Action
Observe K context vectors

For each context vector, calculate a score:

● Sum of confidence bound CB and projected payoff P

Calculating a Score

Expected Payoff P Confidence Bound CB

Updating Knowledge
M: add outer product of modified vectors -- encodes which context was seen
with which user, and spreads the learned information across multiple blocks

b: add modified context vector multiplied by payoff (same as LinUCB)

Issues With GOB.Lin
Relies on a matrix inversion scaling with the number of users (O(n2))

How to solve matrix inversion problem?

● Clustering to reduce number of users!

Two methods for using clustering

● GOB.Lin BLOCK
● GOB.Lin MACRO

GOB.Lin BLOCK

GOB.Lin MACRO

Road Map

Data-Sets
4Cliques

● Small Artificial dataset

Last.fm

● Data from music streaming streaming service
● Fewer but more popular items (artists)

Delicious

● Data from social bookmarking web service
● Many moderately popular items (websites)

4Cliques
Graph starts as 4 cliques of 25 nodes each

Every node i in a clique is assigned the same
preference vector ui

Then add Graph Noise Graph
Noise

4Cliques
At every timestep, learner picks a random user
and generates 10 random context vectors

Payoffs are calculated ai(x) = ui
Tx + ε where x is the

chosen context and ε is the payoff noise uniformly
distributed in a bounded interval around 0

4Cliques’ Original Results
GOB.Lin robust to payoff noise

LinUCB not impacted by graph
noise

4Cliques
Our Results Their Results

Last.fm and Delicious
25 Random Contexts

Context with
non-zero payoff

USER

1 Random User

Delicious
Our Results Their Results

LastFM
Our Results Their Results

Road Map

Successes
We implemented two linear bandit algorithms, as well as their variations

● LinUCB (Sin and Ind)
● GOB.Lin

○ Additionally implemented Block and Macro

On every dataset, our algorithms demonstrated the ability to learn

● This shows that the algorithms could be applicable to other
recommendation-based scenarios

Challenges and Next Steps
GOB.Lin on Last.fm and Delicious was prohibitively slow and memory
intensive

● We could not obtain results for GOB.Lin on these datasets

Ambiguity in paper

● Which α (exploration rate) to use
● How data from Last.fm and Delicious was processed

○ TFIDF
○ PCA
○ Clustering

Main Takeaways of Replication
Our results on Delicious and Last.fm differ from the researchers’ findings, but
follow the same trends

● On Delicious, Block outperforms Macro
● On Last.fm, Macro outperforms Block
● Discrepancy in results may mean that Macro and Block are not as robust

to changes in the dataset as the researchers make them out to seem

Our findings on 4Cliques validate what the researchers found

● This acts to bolster the foundation for more research to be conducted

Thank yous
Anna Rafferty’s server :(

Mike Tie

Paul, Hal, and Paul’s Pal for participating in our lightning talk

Anna Rafferty

- Fall term
- Winter term pre-tenure
- Winter term tenured
- All future Anna Raffertys

Work Cited
Cesa-Bianchi, Nicolo, Claudio Gentile, and Giovanni Zappella. "A gang of
bandits." In Advances in Neural Information Processing Systems, pp. 737-745.
2013.

Chu, Wei, et al. "Contextual bandits with linear payoff functions." Proceedings
of the Fourteenth International Conference on Artificial Intelligence and Statistics.
2011.

Swapna Buccapatnam, Atilla Eryilmaz, and Ness B. Shroff. “Multi-armed
Bandits in the Presence of Side Observations in Social Networks”. 52nd IEEE
Conference on Decision and Control. 2013.

Questions?

