
Replicating A Gang of Bandits

Bryce Bern bernb@carleton.edu

Carleton College, 300 North College St. Northfield Minnesota 55057 USA

Dawson d’Almeida dalmeidad@carleton.edu

Carleton College, 300 North College St. Northfield Minnesota 55057 USA

Will Knospe knospew2@carleton.edu

Carleton College, 300 North College St. Northfield Minnesota 55057 USA

Paul Reich reichp@carleton.edu

Carleton College, 300 North College St. Northfield Minnesota 55057 USA

Abstract

Recommendation systems are vital in max-
imizing user enjoyment. There exists an
abundance of content for users to choose from
on the many entertainment and service plat-
forms available. Some platforms don’t have
access to preexisting information about what
users would like. A next question might be
how good can a recommendation be when
we start with next to no information on our
users as opposed to services used by compa-
nies such as Amazon or Netflix which have
large swaths of data about every user. We
can formalize this question about recommen-
dation systems to be a multi-armed ban-
dit problem. Recent research has sought to
improve multi-armed bandits through bet-
ter utilization of available information. A
Gang of Bandits (Cesa-Bianchi et al., 2013)
presents a novel algorithm that uses social
network information and contextual informa-
tion to more quickly learn users preferences
and optimize cumulative payoff. This paper
explores the process of replicating the exper-
iments and results from A Gang of Bandits
in order to validate the findings of the paper.

1. Introduction

1.1. Paper Replication

Paper replication is vital in all fields of research, as it
tests both replicability of experiments and validity of
results. In order for previous research and findings to
act as strong, trustworthy bases for further research,

their methodology and results must be replicable.
This paper describes the process of replicating A
Gang of Bandits, a machine learning research paper
that presents a novel recommendation system.

1.2. Recommendation Systems and
Multi-Armed Bandits

In an era where an uncountable number of online ser-
vices are available to users, it’s vital for these services
to provide satisfying recommendations for the users.
As popularity is volatile and available content is con-
stantly changing, recommendation systems must try
to learn users’ interests in order to properly map them
to available content.

Multi-armed bandit problems formalize this trade-off
of attempting to learn more about users’ preferences
versus showing users content that we’re confident they
would like. The conventional definition of the multi-
armed bandit problem is where a person has k indis-
tinguishable choices, each of which has a probabilistic
reward. Contextual multi-armed bandits, like those
that are discussed in this paper, are slightly differ-
ent in that each choice has a context that might hint
at which arm will give a higher reward. (Chu et al.,
2011) Because online advertisements or recommenda-
tion systems have information about their users, con-
textual bandits are a more suitable subject of study
than non-contextual bandits. However, recommenda-
tion systems also use social networks like Facebook
to connect friends. And while there has been some re-
search of non-contextual multi-armed bandits within a
social network (Buccapatnam et al., 2013), there has
not been any study of contextual multi-armed bandits

1

Algorithm 1 Problem Space

for t in 1...T do
Select user i, contexts {x1, ..., xt} from dataset
x = learner.choose(user i, contexts {x1, ..., xt})
Calculate payoff a for context x with user i
learner.update(context x, payoff a)

end for

in a social network previous to A Gang of Bandits.

2. Formalizing the Problem Space

Before developing the details of our algorithms, it
would be useful to clearly define our terminology and
problem space. An instance of one of our algorithms is
a learner, which has associated actions choose and up-
date. The items that we choose between (which could
be songs, websites, TV shows, etc.) are contexts, and
in the choose action the learner chooses a context to
recommend. Each context has an associated context
vector, which represents each context, and is used to
provide additional information during the choose ac-
tion. For context vectors x, y, if x and y represent
“similar” contexts, then we expect the dot product
xyT to be relatively high. Should x and y represent
“different” contexts, then we expect the dot product
to be relatively low. In the case of our real-world
datasets, x and y are generated using user-defined tags
from the dataset. Finally, the person who we are se-
lecting contexts for is the user. Depending on whether
the user likes a recommended context, the learner up-
dates its knowledge and learns from the user’s payoff
in the update action. With this in place, our algo-
rithms then operate in the problem space outlined in
Algorithm 1.

When performing the choose and update actions, our
algorithms can either rely solely on the context infor-
mation encoded in the context vectors, or incorporate
the information regarding the social network of users
as well, represented as a graph and presumed to be
included in the construction of the learner.

3. Algorithms

We now move on to the algorithms presented in
A Gang of Bandits. Two primary algorithms
are presented, LinUCB, a contextual bandit algo-
rithm that relies only on context information, and
GOB.Lin, which is an original algorithm presented
in A Gang of Bandits that relies additionally on
the social network graph information. In addition,
two variants of GOB.Lin operating on clustered user

graphs are presented, namely GOB.Lin.BLOCK and
GOB.Lin.MACRO, which use separate GOB.Lin in-
stances for each cluster and a single GOB.Lin instance
across all clusters. The first of these algorithms we
present is LinUCB, which provides both a baseline for
the results presented in the paper and the underlying
framework for the original algorithm presented in A
Gang of Bandits, GOB.Lin.

3.1. LinUCB

LinUCB is an algorithm for a contextual linear ban-
dit that incorporates contextual information but not
social network information. In any contextual linear
bandit, we are assuming that payoffs are determined
as a linear function of the context vectors: that is,
there exists some vector u such that the payoff a of a
context vector xi is the dot product:

uxTi

Essentially, our algorithm is attempting to do its best
to estimate u by observing the payoffs of each context.
Our algorithm will maintain a vector w that estimates
u, and update it to try and improve its estimate of u
as we observe more payoffs.

Before examining exactly how this update will occur,
we will discuss how the choose action of the LinUCB
learner occurs. The simplest method of choosing a
context would be to choose the context with the high-
est estimated score: the context with the maximum
wxTi . If w is already a good estimation of xi, then this
is effective, but otherwise it may be useful to “explore”
more different context vectors in order to get more in-
formation about w. We represent the desire to explore
using the confidence bound CB, which is high when
we don’t know much about a given context and low
when we’ve already seen that context many times. As
a result, we will choose the context with the maximum
value for:

wxi + CB(xi)

In order to maintain information about both the ap-
proximation vector w and which vectors we have seen
for the confidence bound CB, our algorithm will main-
tain a matrixM , which stores information about which
context vectors we have seen, and a bias vector b,
which stores information about the kind of context
vectors produce good payoffs. The pseudocode of Lin-
UCB can then be found in Algorithm 2. A Gang of
Bandits modified

√
ln(|Mt|/δ) + ||u||) in Algorithm 2

to an approximation relying on the timestep t coupled
with an exploration rate α in their implementation,
as this produces considerable speed increases with no
discernable decrease in performance. δ is a constant
and is folded into our new α value.

2

Algorithm 2 LinUCB

Init: b0 = 0 ∈ Rd and M0 = I ∈ Rd×d
for t in 1...T do

Set wt−1 = M−1t−1bt−1
Select user i, contexts {x1, ..., xt} from dataset
Set:
kt = argmaxk=1,...,n(wTt−1xt,k + CBt(xt,k)
Where:

CBt(xt,k) =
√
xTt,kM

−1
t−1xt,k(σ

√
ln(|Mt|

δ) + ||u||)
Calculate payoff a for context x with user i
Set x̄t = xt,kt
Observe reward at ∈ [−1, 1]
Update:
Mt = Mt−1 + xtx

T
t

bt = bt−1 + atxt
end for

We now will examine a specific case of LinUCB for
intuition as to its function. Consider the case at which
point we have observed a single vector x1 with payoff
a1. Then, currently, our matrix Mt is:

I + x1x
T
1

And bt is a1x1 Now consider observing a new context
vector x. Our score is:

(I + x1x
T
1)−1(a1x1)x+ CB(t)

The Sherman-Morrison formula says that:

(A = uvT)−1 = A−1 − A−1uvTA−1

1 + vTA−1u

We can use this to simplify the inversion to:

(I − x1x
T
1

1 + xT1 x1
)(a1x1)x+ CB(t)

Multiplying this out, we get:

a1x1x−
(x1x

T
1)(a1x1)x

1 + xT1 x1
+ CB(t)

Clearly, a1x1x is maximized when x is most similar to
x1. We can use the associative property and factor out
a1 to get:

a1(x1x−
x1(xT1 x1)x

1 + xT1 x1

(xT1 x1) is a scalar, so we can factor to:

a1x1x(1− (xT1 x1)/(1 + xT1 x1))

Writing 1 as (1 + xT1 x1)/(1 + xT1 x1):

a1x1x(
1 + xT1 x1 − xT1 x1

1 + xT1 x1
) =

a1x1x

1 + xT1 x1

The numerator is easy to understand: the more similar
x is to x1, the higher score we will give if a1 is positive,
and the lower the score if a1 is negative. The denom-
inator essentially provides a weight representing the
number of times x1 has been sampled. As the num-
ber of terms in this sum increases, the denominator
will weight each score appropriately. The confidence
bound can be understood similarly, as it depends pri-
marily on:

xT (I + x1x
T
1)−1x = xTx− (xx1)(xT1 x))

(1 + xT1 x1)

Which we can see is maximized when x and x1 are not
similar and minimized when the are, at which point
(xT x1)(x

T
1 x)

(1+xT
1 x1)

scales to be much like xTx. The confi-

dence bound is maximized when vectors are dissimilar
to any vector we have seen before because those vec-
tors will provide the most new information. Note that
in the above algorithm we are agnostic to any fea-
tures of the user. LinUCB has two variants for deal-
ing with multiple users: firstly, LinUCB-IND runs a
separate instance of LinUCB for each user, allowing
each instance to specialize to a user’s taste, whereas
LinUCB-SIN runs a single instance of LinUCB for all
users, which learns faster and performs well if all users
are relatively similar.

3.2. GOB.Lin

While LinUCB does well at estimating payoffs, we
might ask ourselves whether any additional informa-
tion derived from a social network graph can be incor-
porated into our learning and decision-making process.
For GOB.Lin, we assume that each user i has its own
linear function for payoffs, which we will call ui. In
addition, we assume that if users i and j have an edge
between them in the social network graph across all
the users, then ui and uj will be relatively similar. As
a result, it makes sense that when we observe a new
context vector and payoff xt and at with user i, we
should update the other approximation vectors wj in
addition to wi, scaling based on the closeness between
j and i.

In order to implement this, we essentially arrange the
matrices from LinUCB into blocks along the diago-
nal of a larger matrix M of size dm × dm, where d is
the length of a context vector and m is the number
of users. Likewise, we arrange the bias vectors into a
larger vector b of size dm. Then, when observing a
context vector x with a particular user i, we first shift
x into a new vector φ padded with zeros, such that
x aligns with the ith block of M . As described, per-
forming the algorithm from LinUCB with these shifted

3

Figure 1. How We Update Associated Learners

context vectors and modified matrix and bias would be
equivalent to LinUCB-IND, as the padded zeros would
prevent any matrix or section of the bias vector other
than the selected one for user i from contributing to
our calculations. As a result, in order to incorporate
our graph information, we use a modified representa-
tion of our graph to “spread” the context information
across connected blocks. This modified representation

is the matrix A
− 1

2
⊗ , where A⊗ is the kronecker product

of a matrix A and Id, and where A is In +L, where L
is the Laplacian of our graph.

Algorithm 3 GOB.Lin

Init: b0 = 0 ∈ Rdn and M0 = I ∈ Rdn×dn
for t in 1...T do

Get it ∈ V , context Cit = {xt,1, ..., xt,ct};
Construct vectors φit(xt,1), ..., φit(xt,ct), and

modified vectors φ̃t,1, ..., φ̃t,ct , where

φ̃t,k = A
− 1

2
⊗ φit(xt,k), k = 1, ..., ct;

Set:

kt = argmaxk=1,...,ct(w
T
t−1xt,k + CBt(xt,k))

where:

CBt(φ̃t,kt) =
√
φ̃Tt,ktM

−1
t−1φ̃t,kt

(
σ

√
ln(
|Mt|
δ

) + ||Ũ ||
)

Observe reward at ∈ [−1, 1] with user it
Update:
Mt = Mt−1 + φ̃t,kt φ̃

T
t,kt

bt = bt−1 + atφ̃t,kt
end for

Note that the size of the matrices we are working with
is greatly increased in comparison to LinUCB. We will
introduce clustered algorithms to improve this.

Figure 2. A base user graph

Figure 3. The user graph modified for GOB.Lin.BLOCK

3.3. Clustered Algorithms

M now scales in size with the number of users. M must
be inverted every timestep, and while this can be done
using the Sherman-Morrison formula to perform this
inversion in O(n2), this still leads to the algorithm’s
runtime scaling quadratically. As a result, A Gang
of Bandits introduces the use of clustering of users on
the social network graph to reduce the number of users
being considered at once.

The clustering of the users in A Gang of Bandits was
performed using the Graclus algorithm, an implemen-
tation of which is available online. There were two pri-
mary methods presented for using clustering, namely
GOB.Lin.BLOCK and GOB.Lin.MACRO.

3.3.1. GOB.Lin.BLOCK

GOB.Lin.BLOCK is implemented by running separate
instances of GOB.Lin on each cluster in our social
network graph, maintaining edges within the cluster
but isolating it and cutting it off from the rest of the
graph. Each disconnected graph has a small number
of users, and so our runtime is decreased as a result.
Intuitively, we expect that GOB.Lin.BLOCK, with its
ability to specialize each learner instance to specific
user clusters, will perform well where users have di-
verse preferences. As a special case, if all users are
clustered separately, then this is equivalent to running
LinUCB-IND. We can see a visualization of the clus-
ters of GOB.Lin.BLOCK in 3.

4

Figure 4. The user graph modified for GOB.Lin.MACRO

3.3.2. GOB.Lin.MACRO

GOB.Lin.MACRO is implemented by running one in-
stance of GOB.Lin and treating each cluster in our
social network graph as a single user, with the edges
between these new “users” weighted by the number of
inter-cluster edges in the original graph. Intuitively,
we expect that GOB.Lin.MACRO will do best when
users have similar preferences, as we have one learner
that is worse at specializing. In a corresponding spe-
cial case, if all users are clustered together, then this
is equivalent to running LinUCB-SIN. We can see a
visualization of the clusters of GOB.Lin.MACRO in 4.

4. Datasets

4.1. Overview

The researchers tested the GOB.Lin algorithm against
LinUCB on an artificial dataset called 4Cliques and
two real publicly available datasets from the social
bookmarking web service Delicious and from the music
streaming service Last.fm.

Although the researchers were not explicit about why
they decided to construct 4Cliques, we believe it was
used to test GOB.Lin’s ability to take advantage of
a social network. In 4Cliques,a user’s preferences are
directly related to all other users’ within their clique,
creating a perfect environment to test if Gob.Lin is
correctly exploiting social information.

On the other hand, the Delicious and Last.fm are in-
stances where we would expect social information to
matter, but don’t know for certain. So while they are
excellent ways to measure the performance of Gob.Lin
as compared to Lin.UCB, they would not be useful in
trying to see if Gob.Lin is correctly using social infor-
mation.

4.2. Creating 4Cliques

The graph of 4Cliques starts as 4 cliques of 25 nodes
each, with a user ui having the same randomly gener-
ated 25-dimensional unit preference vector as all other
users in its clique. All initializations of 4Cliques also

take 2 parameters as input, graph noise and payoff
noise. We then generate a 100 x 100 symmetric ma-
trix of random numbers between [0,1]. All elements of
the matrix above the inputted value for graph noise is
set to 1 and all others are set to 0. This noise matrix is
then XORed with the original graph matrix to obtain
a noisy version of the graph.

Because 4Cliques is an artificial dataset, we have to
create contexts for the algorithm to compare. At every
timestep, we generate a set of 10 random randomly
generated 25-dimensional unit context vectors. Payoffs
for each context vector x and user are calculated with
the following equation:

uTi x+ ε

The dot product between uTi and x just compares how
similar a selected user’s preferences are to the chosen
context, and ε is randomly generated from an interval
centered at 0 and bounded by the payoff noise param-
eter.

4.3. Last.fm and Delicious

The choice of real world datasets was due to the differ-
ent structure of user preferences as they relate to their
friends’ preferences. Specifically, user preferences in
Delicious are more varied than they are in Last.fm.
This is because there are more popular artists, the
contexts in Last.fm, that everyone enjoys than there
are popular websites, the contexts in Delicious. The
difference between the two datasets gives a more accu-
rate reflection of the performance of recommendation
algorithms.

Figure 5 gives some of the main statistics for both
datasets, where items count the number of artists in
Last.fm and the number of URLs in Delicious, and
Non-Zero payoffs is the number of user-item pairs that
have a non-zero payoff.

5. Implementation

Our preprocessing of the dataset followed all the steps
outlined in A Gang of Bandits. We began by creat-
ing a social network adjacency matrix, where a 1 in
the matrix represented an edge between the column
and row users. We then processed tags in the given
datasets. For Last.fm, we split the artists’ ids and the
tag ids associated with a user’s tag. We then created a
dictionary that stored a list of tags associated with any
given artist. We also split all tag names containing un-
derscores and hyphens, as tags like “rock and roll” and
“rock-n-roll” could both apply to one artist. This was
specifically mentioned by the paper, as it decreased

5

Figure 5. Statistics for Delicious and Last.fm

the number of unique tags significantly. For Delicious,
we processed the tags very similarly, but every website
was directly associated with its tags. We again split
tag names, but we also removed all tags that appeared
less than ten times in order to reduce the size of the
tag set.

In order for LinUCB and GOB.Lin to use the datasets,
we had to provide them with context vectors. In order
to do this for Delicious and Last.fm, we created TF-
IDF context vectors to uniquely represent contexts,
which places higher emphasis on more unique tags.
We used sklearn’s base TfidfTransformer without al-
tering any parameters and applied it to a simple ma-
trix that associated contexts with tags. We then com-
pressed our high-dimensional sparse representation of
each context into a 25 dimensional dense representa-
tion. This retained only the first 25 principle compo-
nents of each context vector, as described in the paper,
using sklearn’s TruncatedSVD to do so. 4Cliques’ con-
texts were uniformly random unit vectors of size 25.

At each time step, we generated 25 random contexts
for Delicious and Last.fm or 10 random contexts for
4Cliques. For Delicious and Last.fm, we guaranteed
that at least one of the 25 vectors would result in a
payoff of 1, meaning the user had bookmarked the site
(Delicious) or listened to the artist (Last.fm). This
was specified in the paper and it removed meaningless
comparisons.

Additionally, when adding noise to the 4Cliques graph,
we only applied the noise to the top triangle of the
adjacency matrix. We then copied it to the bottom
half. This was done in order to maintain symmetry of
the adjacency matrix.

An important thing to note is that on every test run
of any given algorithm using either the Delicious or
Last.fm datasets, the TF-IDF and SVD were used to
generate context vectors for all contexts. As sklearn’s
TruncatedSVD is non-deterministic, every test run can
result in different context vectors.

When implementing both LinUCB and GOB.Lin, we
used numpy arrays and matrices. In order to con-
struct our laplacian matrix, we used sp sparse’s lapla-
cian function on our network graph. Additionally,

all doubles within these matrices were represented
as float32’s. In the implementation of LinUCB, we
treated LinUCB-SIN as LinUCB-IND run for only one
user. We also used the Sherman Morrison formula to
decrease the runtime of matrix inversions from n3 to
n2. This inversion is done on the context matrix, which
is the sum of an invertible matrix and an outer prod-
uct.

In order to implement the two cluster variants of
GOB.Lin, we had to cluster the network graphs of both
Delicious and Last.fm. We used graclus, a graph clus-
tering software written in C that was specified by the
paper, to do this. We interpreted the paper’s cluster
sizes to be the number of clusters to create, as the soft-
ware has no way of specifying the number of nodes in
a cluster. We ran the clustering software once for each
specified number of clusters (5, 10, 20, 50, 100, 200)
and stored the node to cluster associations in csv’s for
later use.

Our implementation of GOB.Lin.MACRO ran a single
instance of GOB.Lin on the clustered graph. For any
given time step, the given user’s cluster was found, and
that super-node and all connected super-nodes were
updated as if they were single users. This signified up-
dating all individual users in those clusters. As such,
a single context matrix and bias vector were sufficient
for any iteration of GOB.Lin.MACRO.

For GOB.Lin.BLOCK, we instead ran many instances
of GOB.Lin on the different clusters. Given a user, we
would find its cluster and use the context matrix and
bias vector associated with that cluster, updating only
those values. As such, there were an equal number of
context matrices and bias vectors to clusters for any
iteration of GOB.Lin.BLOCK.

6. Results

In this section, we examine the results generated when
running each algorithm on the datasets mentioned ear-
lier: 4Cliques, Last.fm, and Delicious. We are using
LinUCB as a baseline point of comparison to deter-
mine how well each version of GOB.Lin is performing.
Additionally, we normalize each of the algorithm’s cu-
mulative reward against an agent choosing contexts
randomly. As we examine the results obtained using
our implemented algorithms, we will compare our find-
ings to that of the researchers’. We will begin by in-
specting the cumulative reward graphs for 4-Cliques.

6.1. 4-Cliques

In figure 6, we can see that our findings for 4Cliques
determine that GOB.Lin performs the best, reaching

6

a cumulative reward of around 3,000, while LinUCB-
IND and LinUCB-SIN trail, respectively reaching cu-
mulative rewards of around 2,600 and 1,600. These
results resemble the researchers’ findings very closely.
We also ran the algorithms on 4Cliques with different
values for the graph noise and payoff noise parameters.
In these cases, our graphs for cumulative reward once
again matched the researchers’.

6.2. Delicious

The first thing to note when inspecting figure 7 is the
lack of GOB.Lin. Unfortunately, due to the quadratic
scaling of the matrix inversion, running GOB.Lin on
datasets as large as Delicious and Last.fm was pro-
hibitively slow. As for the rest of the multi-armed
bandit algorithms, we discover GOB.Lin.BLOCK and
GOB.Lin.MACRO outperforming both versions of
LinUCB. GOB.Lin.MACRO does the best overall, and
LinUCB-IND does slightly better than LinUCB-SIN.
For the Delicious dataset, we know that users tend to-
wards dissimilar interests. And so, it makes sense that
GOB.Lin.BLOCK does better than GOB.Lin.MACRO
since Block stores a matrix for every individual users’
preferences, whereas Macro clumps users together,
treating them all as one. Under the same reasoning,
LinUCB-IND does better than LinUCB-SIN; LinUCB-
IND is able to store personalized data for each user,
while LinUCB-SIN assumes that users are all going to
have similar preferences. When comparing our results
to the researchers’, we see that both follow the same
trends, but the scale between the graphs is different.
While GOB.Lin.BLOCK does the best in both cases,
our version achieves a cumulative reward of 600, while
their version only reaches around 125. The rest of the
algorithms follow this same scaling trend. We will talk
more about why we think that this discrepancy exists
in the conclusion section.

6.3. Last.fm

Just as with Delicious, we were unable to obtain
the results for GOB.Lin due to the size of Last.fm.
In figure 8, LinUCB-SIN performed the best, with
GOB.Lin.MACRO taking a close second. Both
GOB.Lin.BLOCK and LinUCB-SIN have a negative
cumulative reward, meaning that they are choosing
contexts worse than a random agent would. These
finding also follow the trends we would expect for the
Last.fm dataset; Last.fm contains users who all have
very similar preferences. And so, it makes sense that
LinUCB-SIN does the best, since it treats every user as
having the same preferences, and GOB.Lin.MACRO
does almost as well, since it treats each cluster as a
single user. While our findings follow similar trends to

the researchers’, they do not match entirely. The re-
searchers’ graph shows that GOB.Lin.MACRO does
the best, with LinUCB-SIN in a close second, but
our findings switch the two. How well or poorly our
algorithms perform is also magnified in comparison
to the researchers’. Our results show that LinUCB-
SIN and GOB.Lin.MACRO both reach around 3,000,
whereas the researchers calculate a reward closer to
1,250. Our results are also extreme in the other di-
rection; LinUCB-IND and GOB.Lin.BLOCK collect a
negative reward compared to the researchers’ findings,
where Block and LinUCB-IND have rewards of 750
and 175 respectively.

7. Conclusion

When running the algorithms we implemented on 4-
Cliques, our findings closely resemble the researchers’.
We consider this a success as it acts to validate the
researchers’ work and bolsters the foundation for fu-
ture research to be conducted in the future. For both
Last.fm and Delicious, our results follow the same
general trends as the researchers’ but differ regarding
scale. We are confident that our algorithms are imple-
mented correctly because we are producing the same
results as the researchers on the 4-Cliques dataset.
Therefore, we believe that this discrepancy is due to
how the two datasets are being processed. In the re-
searchers’ explanation of processing the data, they are
not clear in exactly what functions and parameters
they use to implement TF-IDF and PCA. If the differ-
ence in dataset processing is causing this discrepancy,
it may imply that these algorithms are not as robust to
changes in the dataset as they might appear by reading
the paper. In the future, further experimentation into
how different dataset processing impacts the cumula-
tive reward for these algorithms would be valuable.

References

Buccapatnam, Swapna, Eryilmaz, Atilla, and Shroff,
Ness B. Multi-armed bandits in the presence of
side observations in social networks. In 52nd IEEE
Conference on Decision and Control, pp. 7309–7314.
IEEE, 2013.

Cesa-Bianchi, Nicolo, Gentile, Claudio, and Zappella,
Giovanni. A gang of bandits. In Advances in Neural
Information Processing Systems, pp. 737–745, 2013.

Chu, Wei, Li, Lihong, Reyzin, Lev, and Schapire,
Robert. Contextual bandits with linear payoff func-
tions. In Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics,
pp. 208–214, 2011.

7

Figure 6. A comparison of our results (on the left) versus the researchers’ (on the right) on the 4-Cliques dataset.
The graphs are measuring cumulative reward over the number of timesteps. The error shown is the standard
deviation over 10 runs.

Figure 7. A comparison of our results (on the left) versus the researchers’ (on the right) on the Last.fm dataset.
The graphs are measuring cumulative reward over the number of timesteps.

8

Figure 8. A comparison of our results (on the left) versus the researchers’ (on the right) on the Delicious dataset.
The graphs are measuring cumulative reward over the number of timesteps.

9

