
LosCat: A Tool for 
Source Code Monitoring

Anders Bruihler, Ari Conati, 
Sebastian Kimberk, & David White



Background - Source Code

General idea of programming as someone sitting at a computer typing code.



Background - Source Code

Breaking down that idea, there are two main parts - the programmer, and the code.



Background - Source Code

If you are less familiar with programming and CS in general, you can basically think of 
code as a big Word document.  It’s not a perfect analogy, but close enough where it’ll 
work for comparison.



Background - Source Code

One important aspect of prorgramming is that you’ll almost always be working not by 
yourself, but rather with a group of people.  The group size will vary, but it still comes 
down to everyone working on the same code/Word document at the same time.  
There are tools (git, etc.) that help manage this, but this basic idea is still true.



Background - Source Code Monitoring
Coding - a big group project with people working on different parts

Natural desire to monitor the changes!

● Tests failing
● Inconsistent formatting
● etc.

If you think of coding as a big group project with lots of different people working on 
different parts of the same big Word document, you’ve got a reasonable grasp of how 
programming generally works today.

Given this group project dynamic, there is a natural desire to monitor changes that 
arises.

For example, you might want to be notified when tests fail, when someone adds 
inconsistent formatting, or in any number of other similar situations.

In terms of the Word document version of programming, you might want to be notified 
when someone changes the conclusion that you have put a lot of work into, when 
people are working on the document in general, or something else.  If you’ve ever 
worked in a group on a document, you’ve probably had these sorts of thoughts in the 
past.  

The idea behind source code monitoring is to automatically watch the changes that 
happen to code (i.e. whenever someone clicks the save icon in the group Word 
document), and be able to react to things that happen.  This is what our tool enables 
people to do.

You can see a couple examples here:
On the right, you can see our Slack history.  We set up LosCat to automatically send a 
message when someone makes a change with the name of the person and the 



message that they described their change with.
In the middle, you see a notification that is sent when a new version of a program is 
released, and the notification includes the new version number as well as a list of 
people who contributed to the project since the last version.  We’ll get more in depth 
with how to do this specific example later.
On the bottom left, you see a screenshot saying that Ari has changed an important 
part of the code, and that further attention may be warranted.  This message is only 
sent when this specific part of the code (Word document) has been changed.



Inspiration - Triggr
“Lightweight source code monitoring with Triggr” 
- Automated Software Engineering 2018 Tool 
Demonstrations

Previous solutions: centralized, inflexible, 
coarse-grained

Triggr goals: distributed, flexible, fine-grained

How: “Probes” tracked in the repo, customizable 
by developers, targets file/class/method, triggers 
“actuators”

We were inspired by Triggr, which is a source code monitoring tool created and 
presented at the ASE 2018 conference, in the Tool Demonstrations section.

The authors found that previous solutions required developers to come to agreement 
on how the monitoring tool should be configured, with limited configuration options.

They wanted Trigger to allow individual developers to set up their own configurations 
without having an impact on others, while also enabling developers to create exactly 
what they want.



Goals/Improvements to Triggr
● Do it ourselves!
● In Python (instead of .NET Core)
● Support targeting Python methods, 

classes
○ As well as generic file changes

● Include:
○ Slack bot
○ Email
○ Fuzzer
○ etc.

● IDE plugin
● Extensibility

Benefit of doing in Python - much more popular and easier language in .NET Core, so 
benefit to those who use LosCat.  Also we all had experience with Python.

A big goal of LosCat was to let users easily add their own functionality to accomplish 
whatever they want.  We’ve created some default modules, but adding new stuff is 
very easy.



User codeLosCat Code

Overall Project Structure

LosCat Server

Modules

User Repository

Probes

Slack 
Bot

Fuzzer

Email 
Sender

Code 
Finder

You can add more!

Send a 
Slack 

message 
when 

function is 
changed

Test code 
with 

randomly 
generated 

input

Give a 
shoutout on 
Slack to top 
contributors

Combine modules to do what you want!

LosCat waits for 
changes to code

Probes act on user 
code using 
modules

In this diagram the Loscat Code is our code and the User Repository is the project for 
which a user wants to implement source code monitoring. Modules are scripts which 
are useful for performing various code monitoring tasks. Users configure probes by 
supplying parameters for the modules they want to run on their code. These custom 
probe files are stored in the user repository. The LosCat server then monitors the 
User Repository, and whenever an update is pushed, LosCat automatically runs the 
configured probes on the user’s code.



Example - Tracking Code Changes
● User wants to be notified when the 

function foo is changed by another 
developer

● Probe sends a slack message to 
the designated channel when foo is 
changed



Module structure
● Modules are scripts that might be 

run as part of a code monitoring 
task

Name: CodeChange

Module

Modules

Slack 
Bot

Fuzzer

Email 
Sender

Code 
Finder

You can add more!

Command: ./codechange.sh {HEAD}/{file} 
{HEAD~1}/{file} {target} {targetType}

Return: True if the piece of code specified by target (file, function, class) has 
changed between git commits, False otherwise

Modules are stored as a JSON list, where each module consists of its name and 
command line command. Parameters are indicated within the command using ‘{}’.



Probe Structure 
● Probes supply parameters for 

modules to perform a code 
monitoring task

● Chain modules to perform more 
sophisticated tasks

● Can include condition for 
running module

Probes

Send a 
Slack 

message 
when 

function is 
changed

Test code 
with 

randomly 
generated 

input

Give a 
shoutout on 
Slack to top 
contributors

Combine modules to do what you want!

Probe

CodeChange: Test if foo has changed

lastCommitUser: Fetch author of most recent commit

lastCommitMessage: Fetch message associated with most recent commit

slackBotSimple: Post user, message to slack (Condition: CodeChange 
module returned True)

Probes contain a list of modules with parameters supplied. Each probe configuration 
file is a JSON list. Each script in a probe is run in order (may actually be run in 
parallel, but for the purposes of writing the files it is best to think of them as running 
top to bottom). Each module also has an optional condition indicating whether it 
should be run at all.



Example - Tracking Code Changes
● User wants to be notified when the 

function foo is changed by another 
developer

● Probe sends a slack message to 
the designated channel when foo is 
changed



Modules
Slack Bot

Python AST

Fuzzer

Custom modules



Modules: Slack Bot
● Python program with two modes

○ $ python3 slack_actuator.py --simple [API_TOKEN] [channel] [text]
■ Basic text message

○ $ python3 slack_actuator.py --blocks [API_TOKEN] [channel] [text] [blocks]
■ Block Kit-formatted message

● Corresponding LosCat modules:
○ slackBotSimple
○ slackBotBlocks
○ Module code handles API_TOKEN

● Extensions?
○ This is a simple but useful bot
○ Potential for interactivity with Slack user

For the majority of the time that we were working on LosCat, we had it running and 
sending notifications to our Slack channel whenever someone made a change, as 
shown in the picture.  We found this incredibly helpful in terms of awareness of work 
that was happening on the project.  

The current version of the Slack bot is a quite basic implementation.  There is a lot of 
potential to add more support, including sending messages to dynamically calculated 
people (instead of a hard-coded channel for each probe), and also to add interactivity 
with developers through Slack.  For example, a message could present the developer 
with two buttons, and depending on the input, further actions could be taken by 
LosCat automatically.



Modules: Python Code Finder
lots_of_code.py

class(CrazyClass) > func(critical_method) 

lots_of_code.py
6:5
7:31

(parses program, builds AST, traverses AST to 
find specified code block)

lots_of_code.py

What is an AST? Abstract syntax tree? Define the jargon. Make it make sense to a 
friend who would struggle to understand this.

Use case: You want to run a probe on a specific piece of code (for example, a specific 
function or class)
The Python AST module takes in a simple syntax to specify code location
class(TestClass): matches class(es) named TestClass
class(TestClass) func(simple_function): function anywhere inside the class
class(TestClass) > func(simple_function): function that’s a direct descendant of the 
class
> func(simple_function): only global functions (direct children of root)
Analyzes Python AST in order to find code
Returns the start location and end location (the lines and columns)
(Example: codechange.sh tells you when AST changes, slide notes)

[
  {

"name": "myMethodUpdated",
"type": "codeChange",
"config": {

  "file": "core.py",
  "target": "my_method",
  "targetType": "function"

}



  },
  {

"name": "user",
"type": "lastCommitUser",
"config": {
}

  },
  {

"type": "slackBotSimple",
"config": {

  "condition": "myMethodUpdated",
  "channel": "[your DM ID]",
  "message": "{user} changed my method!  What are they doing!"

}
  }
]



Video demonstration of a message being sent when critical_method is changed, and 
not when another message is changed.

https://docs.google.com/file/d/11S3Yquwoh36b1HycUoIeXDZVCcmqW1Nh/preview


Modules: Grammar Fuzzer
● What’s a fuzzer?
● Grammar?
● Use case?

What is a fuzzer? What’s a grammar? Define the jargon. Make it make sense to a 
friend who would struggle to understand this. ANTLR.

Use case: a program takes input in a specific form. We want to automatically test the 
program with a wide range of syntactically correct inputs.
Example: a Scheme interpreter
The probe takes a grammar definition (specified in ANTLR format) and a command, 
then it generates input from the grammar and passes it to the command via STDIN
All errors are recorded and output from the probe



Fuzzer Example: Grammar An expression can be a number
(i.e. 47 or -17.375)

Or, two expressions followed by an 
operator.

Examples:
1 2 +
1 2 + 3 *



Fuzzer Example: Grammar Output
0.8721

927E6 -0.9 -

9 -3.45e-0 -45.702686618 * -324 * 2.13 - 0E-0 * 602502.02 -0.7 * 19.10 * 488e+0 * - 
0.398e-63 + *

-0 -8e50 9442 -3e56 * 0E-49 * - 8E82 -0.3e9 3 + 0E1 + 4.4 0.5184E0 0.15E0 -0 0.2e3 - 
0.7e0 0.0E0 -0.33E0 8.80654e6 + 8E88 -9.09E+0 -0.3 - - * 0e-6 - * -5 * 0.7e-0 * 45.718 + * + 
* - + 0e83 + 0.3663e0 - * -0.4E0 0E157 * 4E9 - + * -0.2E4957 -1 + 0.7E+4 0.9 - - + - - 
-0E-59630 -0.33827 -85.9 13.4 -3.751 * 0.766 * 0 0.6e0 6 * + - 61.49078 -0 * -3.92e-0 -0 - 
0.222 0.25e+6 - -67e0 + + - + -0 + * * - -0.7 - *

(generates graph representation of grammar, calculates minimum recursion depth to generate each 
node, randomly traverses graph while keeping track of depth)



Fuzzer Example: Probe Specify grammar file

Specify grammar rule to generate

Specify what file to run with 
generated input

Send results to Slack!



Example running of a the fuzzer probe, including demonstration of how input 
producing errors is sent to Slack when there is a bug with the tested code.

https://docs.google.com/file/d/1uwOgz7SM2IeAcjI2exXM_Gpiiz2P8Jcq/preview


Custom module/probe example walkthrough
Idea: On new version release, post a message to Slack announcing the release 
and thanking contributors to the release

This walkthrough will highlight different aspects of LosCat to show how it can easily 
be extended, in order to add specific desired functionality without much cost to the 
developer.

This message is automatically created and sent when version.txt is changed, and the 
contributors are calculated since the last git tag.



Custom walkthrough - probe overview
if [version.txt changed]:

postToSlack(

…[new version.txt]…

…[list of contributors since [last git tag]]…

)

[version.txt changed] - fileChange default module
postToSlack - slackBotBlocks default module
[new version.txt] - readFile default module
[last git tag] - we need to create this as a new module (lastTag)
[list of git contributors since [...]] - we need to create this as a new module 
(committersSince)



Custom walkthrough - modules
  "lastTag": {

"command": "cd {HEAD} && git describe --tags --abbrev=0"

  },

  "committersSince": {

"command": "./scripts/probes/committers.sh {dir} {tag}"

  }

  

  

lastTag - simple bash shell command, using {HEAD} to cd into the directory where the 
new version of the code is
committersSince - implemented in an external bash shell script, needs two 
parameters, {dir} for the directory of the repo and {tag} for when to calculate 
contributors since.  

committersSince is a bash script, but easily could be created in Python or whatever 
the developer is familiar with.



Custom walkthrough - committersSince bash script
Bash script that lists contributors to a git repo 
since a given tag

#!/bin/bash

cd "$1" || exit

committers=$(git shortlog "$2"..HEAD -sn)

echo "$committers"

Output (commit count, name):

$ ./scripts/probes/committers.sh [directory] [tag]

13    Alice

 12    Bob

 9 Eve

Actual script isn’t really important, other than when given parameters it prints out the 
list of contributors.  The output can be saved and used by another module.

(This could be accomplished without an external shell script, but this is used as an 
example.)



{
"name": "contributors",
"type": "committersSince",
"config": {

    "dir": "{HEAD}",
    "tag": "{oldTag}"

}
  },
  {

"type": "slackBotBlocks",
"config": {

    "condition": "{versionBump}",
    "channel": "[insert channel ID here]",
    "message": "Version {newVersion} released!",
    "blocks": "[{\"type\": \"section\",\"text\": {\"type\": 
\"mrkdwn\",\"text\": \"Version `{newVersion}` has been released! 
:tada:\"}},{\"type\": \"divider\"},{\"type\": \"section\",\"text\": {\"type\": 
\"plain_text\",\"text\": \"Thanks to these contributors since the 
last release:\\n{contributors}\",\"emoji\": true}}]"

}
  }
]

# post to Slack
if versionBump:
    postToSlack(
        …[newVersion]…
        …[contributors]…
    )

[
  {

"name": "versionBump",
"type": "fileChange",
"config": {

    "file": "version.txt"
}

  },
  {

"name": "newVersion",
"type": "readFile",
"config": {

    "path": "version.txt"
}

  },
  {

"name": "oldTag",
"type": "lastTag",
"config": {}

  },
  

Custom walkthrough - probe

versionBump = 
[whether version.txt 
changed in this update]

newVersion = 
[contents of version.txt]

oldTag = 
[the last git tag 
(release)]

contributors = 
[list of contributors 
since [oldTag]]

Here the different modules, including default ones, are combined to create the probe.

The name field is used to save the output of a module to use it if necessary later.

Note the condition field for slackBotBlocks - the message will only send if 
{versionBump} has changed - what we want!

slackBotBlocks blocks field is complicated because it’s a Block-Kit formatted 
message, which lets us make it look a bit better.  Important parts (in bold) are that we 
include {newVersion} and {contributors}.



Custom walkthrough - result

It works!  Yay!

This hopefully has been a good example of how a developer with a specific desire for 
code monitoring and automation on changes can easily create what they want in 
LosCat.  We’ve shown a few different aspects of the process, including figuring out 
what modules are necessary, simple module creation, more advanced module 
creation, and how to put together the final probe.

If you’ve ever worked on a group project it is very possible that you had a moment 
where you wished you could be notified when something specific changed.  If you’ve 
worked with code, this is even more likely.  We’ve tried to have LosCat let you bring 
these into reality easily.



We’ve got a website!

Web Interface

We have a website!  It doesn’t look great, but it is functional, which is the important 
part for now.

/probes&repo=?{repo_name} shows probes for the given repo that LosCat is watching 
(we support multiple repos per instance of LosCat)
/probelogs shows the logs of all run probes.  Helpful for checking what/why a probe 
output and debugging.
/modules shows all the configured modules, and by filling in the fields, you can trigger 
a module.
/running shows the currently running probes.  (Potential for a kill/restart/etc. button 
here, but we didn’t get to that)



IDE Plugin Interface
● Plugin for JetBrains IDEs (IntelliJ, PyCharm, etc.) which allows for easily 

adding probes to a project
● Automatically generate probe JSON files



IDE Plugin Interface



Internals: Running A Probe

Extra Bindings

{simpleCodeChange}: “True”

{HEAD}: New Version

{HEAD~1}: Old Version

1

2



Commit Message

Internals: Running Multiple Probes

Commit User

Code Change

Slack Message



Code Change

Commit Message

Internals: Running Multiple Probes

Commit User

Slack Message03

0
0

0

21



Internals: Github Webhooks

Programmer

GithubLosCat Web Endpoint

P
ushes code

Sends request

Pulls code, then runs 
probes etc...

How does LosCat known when to run probes on your code?
Github has webhooks: you can easily setup your repo so that Github makes a POST 
request to a given URL whenever the repo is pushed to
When LosCat receives this request, it clones the repo, runs the probes, etc!



Internals: Github Webhooks

Super easy to set up!



User codeLosCat Code

Repository Management

LosCat Server

Modules

User Repository

Probes

Slack 
Bot

Fuzzer

Email 
Sender

Code 
Finder

You can add more!

Send a 
Slack 

message 
when 

function is 
changed

Test code 
with 

randomly 
generated 

input

Give a 
shoutout on 
Slack to top 
contributors

Combine modules to do what you want!

LosCat waits for 
changes to code

Probes act on user 
code using 
modules



User codeLosCat Code

Repository Management

LosCat Server

Modules

User Repository

Probes



User code

Repository Management

User Repository

Probes

Modules



User codeLosCat Code

Repository Management

LosCat Server

Modules

User Repository

Probes

Modules



User codeLosCat Code

Repository Management

LosCat Server

Modules

User Repository

Probes

Modules
Config Config

Server Config
Overrides

User Config



Repository Management

LosCat Server User Code

User CodeUser Code

User Code



Internals: Server Configuration/Deployment
● Running on an AWS EC2 instance (which runs an Amazon variant of Redhat)
● Set up as a systemd service

○ Automatically restarts on crash/server restart
○ Service has a dedicated user with restricted permissions (can only modify the LosCat 

directory)
○ Runs on port 8080 (so as to not need sudo) and has forwarding from port 80 to 8080

● Python service listens for HTTP requests at a specific address. When hit, it 
pulls new code from Github, installs dependencies using pip, and it replaces 
the current process with the new code

○ Github is setup to hit the address whenever our repo is updated
○ Deployment is completely automated



Conclusion



Thanks
● Dave Musicant
● The Carleton College CS Department
● Zoom, Slack, & Github
● Friends and Family
● You

Dave Musicant - our Comps advisor
Zoom, Slack, & Github - for allowing us to work together remotely



References
● “Lightweight source code monitoring with Triggr,” Automated Software 

Engineering 2018
○ <https://dl.acm.org/doi/10.1145/3238147.3240486>

● “CodeAware: sensor-based fine-grained monitoring and management of 
software artifacts,” International Conference on Software Engineering 2015

○ <https://dl.acm.org/doi/10.5555/2819009.2819099>

● “Grammarinator: a grammar-based open source fuzzer," A-TEST 2018
○ <https://dl.acm.org/doi/10.1145/3278186.3278193>

Triggr - inspiration paper
CodeAware - previous version of Trigger created by the authors

https://dl.acm.org/doi/10.1145/3238147.3240486
https://dl.acm.org/doi/10.5555/2819009.2819099
https://dl.acm.org/doi/10.1145/3278186.3278193


Images
Fuzzer Cat: <https://icatcare.org/advice/helping-your-new-cat-or-kitten-settle-in/>
Word icon: <https://commons.wikimedia.org/wiki/File:Microsoft_Office_Word_(2018%E2%80%93present).svg>
Profile: <https://publicdomainvectors.org/en/free-clipart/Anonymous-person/59504.html>
Code windows: <https://publicdomainvectors.org/en/free-clipart/Programming-language/70504.html>
Programmer + computer: <https://publicdomainvectors.org/en/free-clipart/Computer-programmer-from-back/80570.html>
Business people: <https://publicdomainvectors.org/en/free-clipart/Professional-people-silhouette/81904.html>
Smiley Face: <https://www.publicdomainpictures.net/pictures/130000/velka/clip-art-smiley-face.jpg>
Suspicious Face: <https://freesvg.org/img/Unknown-Smiley-Face.png>
Sad Face: <https://www.goodfreephotos.com/vector-images/unhappy-face-vector-clipart.png.php>

https://icatcare.org/advice/helping-your-new-cat-or-kitten-settle-in/
https://commons.wikimedia.org/wiki/File:Microsoft_Office_Word_(2018%E2%80%93present).svg
https://publicdomainvectors.org/en/free-clipart/Anonymous-person/59504.html
https://publicdomainvectors.org/en/free-clipart/Programming-language/70504.html
https://publicdomainvectors.org/en/free-clipart/Computer-programmer-from-back/80570.html
https://publicdomainvectors.org/en/free-clipart/Professional-people-silhouette/81904.html
https://www.publicdomainpictures.net/pictures/130000/velka/clip-art-smiley-face.jpg
https://freesvg.org/img/Unknown-Smiley-Face.png
https://www.goodfreephotos.com/vector-images/unhappy-face-vector-clipart.png.php


Questions?


