LosCat: A Tool for
Source Code Monitoring

Anders Bruihler, Ari Conati,
Sebastian Kimberk, & David White

Background - Source Code

General idea of programming as someone sitting at a computer typing code.

Background - Source Code

Breaking down that idea, there are two main parts - the programmer, and the code.

Background - Source Code

If you are less familiar with programming and CS in general, you can basically think of
code as a big Word document. It's not a perfect analogy, but close enough where it’ll
work for comparison.

Background - Source Code

ptith o

One important aspect of prorgramming is that you’ll almost always be working not by
yourself, but rather with a group of people. The group size will vary, but it still comes
down to everyone working on the same code/Word document at the same time.
There are tools (git, etc.) that help manage this, but this basic idea is still true.

Background - Source Code Monitoring

Coding - a big group project with people working on different parts

saad APP 2:18 PM

Natural desire to monitor the changes! 4 52d repo was updated by Anders Bruihler:

Code reformats

e Tests failing Whited 2:1¢ i
e Inconsistent formatting roora!

saad APP 5:13 PM

. SF 4 saad repo was updated by Sebastian Kimberk:
L etc. Version 4 has been released! S; P i <
Merge branch 'master' of
i i https://github.com/skimberk/saad

Thanks to these contributors since the last release:

13 Alice Y saad APP 5:20 PM

12 Bob 4 saad repo was updated by Sebastian Kimberk:

9 Eve

added fuzzer repo url to config

saad APP 5:28 PM
4 Davids test probe worked in saad_example.

Ari Conati changed critical_method()! Better make sure things are okay!

If you think of coding as a big group project with lots of different people working on
different parts of the same big Word document, you’ve got a reasonable grasp of how
programming generally works today.

Given this group project dynamic, there is a natural desire to monitor changes that
arises.

For example, you might want to be notified when tests fail, when someone adds
inconsistent formatting, or in any number of other similar situations.

In terms of the Word document version of programming, you might want to be notified
when someone changes the conclusion that you have put a lot of work into, when
people are working on the document in general, or something else. If you've ever
worked in a group on a document, you’ve probably had these sorts of thoughts in the
past.

The idea behind source code monitoring is to automatically watch the changes that
happen to code (i.e. whenever someone clicks the save icon in the group Word
document), and be able to react to things that happen. This is what our tool enables
people to do.

You can see a couple examples here:
On the right, you can see our Slack history. We set up LosCat to automatically send a
message when someone makes a change with the name of the person and the

message that they described their change with.

In the middle, you see a notification that is sent when a new version of a program is
released, and the notification includes the new version number as well as a list of
people who contributed to the project since the last version. We'll get more in depth
with how to do this specific example later.

On the bottom left, you see a screenshot saying that Ari has changed an important
part of the code, and that further attention may be warranted. This message is only
sent when this specific part of the code (Word document) has been changed.

Inspiration - Triggr

“Lightweight source code monitoring with Triggr”
- Automated Software Engineering 2018 Tool
Demonstrations

Previous solutions: centralized, inflexible,
coarse-grained

Triggr goals: distributed, flexible, fine-grained

How: “Probes” tracked in the repo, customizable
by developers, targets file/class/method, triggers
“actuators”

Lightweight Source Code Monitoring with Triggr

Alim Ozdemir
Faculty of Computer and Informatics Engineering
Istanbul Technical University
Istanbul, Turkey
ozdemirali@itu.edu.tr

Hakan Erdogmus
Carnegie Mellon University
Silicon Valley, CA
hakan.erdogmus@sv.cmu.edu

ABSTRACT

Existing tools for monitoring the quality of codebases modified
by multiple developers tend to be centralized and inflexible. These
tools increase the visibility of quality by producing effective re-
ports and visualizations when a change is made to the codebase
and triggering alerts when undesirable situations occur. However,
their configuration is invariably both (a) centrally managed in
that individual maintainers cannot define local rules to receive
customized feedback when a change occurs in a specific part of
the code in which they are particularly interested, and (b) coarse-
grained in that analyses cannot be turned on and off below the
fle level. Triggr, the tool proposed in this paper, addresses these
limitations by allowing distributed, customized, and fine-grained
‘monitoring. It is a lightweight re-implementation of our previ-
ous tool, CodeAware, which adopts the same paradigm. The tool
listens on a codebase’s shared repository using an event-based
approach, and can send alerts to subscribed developers based on
rules defined locally by them. Triggr is open-source and available
at Triggr. A video can be
found at https://youtu be/qQs9aDwXJjY.

Ayse Tosun
Faculty of Computer and Informatics Engineering
Istanbul Technical University
Istanbul, Turkey
tosunay@itu.edu.tr

Rui Abreu
INESC-ID, Instituto Superior Tecnico
University of Lisbon
Lisbon, Portugal
rui@computer.org

*18), September 3-7, 2018, Montpellier, France. ACM, New York, NY, USA,
4 pages. hitps//doi.org/10.145/3238147.3240486

1 INTRODUCTION

Existing tools for quality monitoring of shared codebases are in-
variably coupled to integrated development environments (IDE),
version control systems, continuous integration (CI) servers, or
cloud-based quality analyzers. Such tools offer many advantages
to developers such as automated code inspections, extraction of
metrics, flagging potentially bug-prone parts, visualization of code-
level time trends, and even collaboration patterns. As an ubiquitous
example, some of these tools/features are built into Github [7]
Other tools, typically static analyzers and metrics extractors for
various programming languages and frameworks, function as local
standalone systems (e.g, FindBugs [16], CodeLyzer [3]) and sup-
port multiple programming languages (e.g., pfff [6] and OOMeter
[14]). However, the real benefits materialize when they are provided
either as a library [12], centrally served framework [4], or as a third
party service [2, 22], and/or when they are connected to another
team-level tool, e.g.,a Cl server or a central code repository running

We were inspired by Triggr, which is a source code monitoring tool created and
presented at the ASE 2018 conference, in the Tool Demonstrations section.

The authors found that previous solutions required developers to come to agreement
on how the monitoring tool should be configured, with limited configuration options.

They wanted Trigger to allow individual developers to set up their own configurations
without having an impact on others, while also enabling developers to create exactly

what they want.

Goals/Improvements to Triggr

skimberk / saad @unwatch~ 3 Wstar 0 YFork 0

e Do it ourselves!
In Python (instead of .NET Core)
A code monitoring tool being developed by students at Carleton College.
Support targeting Python methods, py—— Y- 225 conrtanors
classes e Crasanowtie | U ies Finafie
o As well as generic file changes

©Code (lssues o Pull requests 0 Actions [l Projects 0 Wiki) Security 0 Insights

branch ‘master’ of hitps:/github.com/skimberkisasd Latest commit 1ee7360 23 hours ago

added macke defintionor uzzer 20aps 300
e Include:
it probes odays g0
o Slack bot
Merge branch master of hts:ghthu comeimberisaad 23hours ago
o Email 2.days ago
tgnore sdaysago
o Fuzzer ”
READMEmd
o etc
-

IDE plugin
e Extensibility

out git code and added sample webhook request command to readme

temp.txt test change

testpy Try to make double/single quotes more consistent, with double quotes

Benefit of doing in Python - much more popular and easier language in .NET Core, so
benefit to those who use LosCat. Also we all had experience with Python.

A big goal of LosCat was to let users easily add their own functionality to accomplish
whatever they want. We’ve created some default modules, but adding new stuff is
very easy.

Overall Project Structure

LosCat Code User code
LosCat waits for
changes to code .
LosCat Server —————— User Repository
Probes act on user
code using _
modules _— PrObeS
—_ N
_ - ~ ~
«—— Send a Test code Give a
M Od u IeS Slack with shoutout on
- N ~ message randomly Slack to top
when generated contributors
Slack Code Email function is input
Bot Finder Sender changed

Fuzzer You can add more!

Combine modules to do what you want!

In this diagram the Loscat Code is our code and the User Repository is the project for
which a user wants to implement source code monitoring. Modules are scripts which
are useful for performing various code monitoring tasks. Users configure probes by
supplying parameters for the modules they want to run on their code. These custom
probe files are stored in the user repository. The LosCat server then monitors the
User Repository, and whenever an update is pushed, LosCat automatically runs the

configured probes on the user’s code.

Example - Tracking Code Changes

User wants to be notified when the
function foo is changed by another
developer

Probe sends a slack message to
the designated channel when foo is
changed

Module structure Modules

)) —
e Modules are scripts that might be e ~
itori Slack Code Email
run as part of a code monitoring oy Code || Emal
task
Fuzzer You can add more!

_-Y Name: CodeChange

-
-

Module |<_
| A Command: ./codechange.sh {HEAD}/{file}

i {HEAD~1}/{file} {target} {targetType}
Return: True if the piece of code specified by target (file, function, class) has
changed between git commits, False otherwise

~

Modules are stored as a JSON list, where each module consists of its name and
command line command. Parameters are indicated within the command using ‘{}.

Probe Structure

e Probes supply parameters for
modules to perform a code

monitoring task

e Chain modules to perform more
sophisticated tasks

Probes

N
P
Send a Test code Give a
Slack with shoutout on
message randomly Slack to top
when generated contributors
function is input
changed

Combine modules to do what you want!

e Can include condition for
running module

Probe

7/
7/
/s

s

NS

\ ™ lastCommitMessage: Fetch message associated with most recent commit

AN
4

CodeChange: Test if foo has changed

slackBotSimple: Post user, message to slack (Condition: CodeChange

module returned True)

lastCommitUser: Fetch author of most recent commit

Probes contain a list of modules with parameters supplied. Each probe configuration
file is a JSON list. Each script in a probe is run in order (may actually be run in
parallel, but for the purposes of writing the files it is best to think of them as running
top to bottom). Each module also has an optional condition indicating whether it
should be run at all.

Example - Tracking Code Changes

User wants to be notified when the
function foo is changed by another
developer

Probe sends a slack message to

the designated channel when foo is

changed

1
1

:_"simpleCodeChange"”,

i B

w f

name"

type" : "cod

config" : {
"file" : "src/test.py”,
“targetType" : "function®,
"target" : "foo"

{

"name" : “"getUser"

“type" : "lastCommitUser"

"config" : { }

“name" : “"getMessage",

"type" : "lastCommitMessage",

"config" : { }

"name" : "slackMessage",

“type" : "slackBotSimple",

"config" : {
“condition”
"channel® : "my-Chammed=
"message"” : “"function foo updated by {getUser}: {getMessage}"

Slack Bot

Modules Python AST

Fuzzer

Custom modules

Modules: Slack Bot

e Python program with two modes

o --simple [API_TOKEN] [channel] [text]
m Basic text message
o --blocks [API_TOKEN] [channel] [text] [blocks]
m Block Kit-formatted message @ ssad % 21spm
) Correspond|ng LOSCat mod uleS 4 saad repo was updated by Anders Bruihler:
° S|aCkBOtSimp|e Code reformats
o slackBotBlocks Whited 218 PM
|
o Module code handles API_TOKEN .
i @ 52ad A% 513PM
L] EXtenS|0nS? 4 saad repo was updated by Sebastian Kimberk:
o This is a simple but useful bot Merge branchi imaster. (o

https://github.com/skimberk/saad

o Potential for interactivity with Slack user
Y saad APP 5:20 PM
4 saad repo was updated by Sebastian Kimberk:

added fuzzer repo url to config

For the majority of the time that we were working on LosCat, we had it running and
sending notifications to our Slack channel whenever someone made a change, as
shown in the picture. We found this incredibly helpful in terms of awareness of work
that was happening on the project.

The current version of the Slack bot is a quite basic implementation. There is a lot of
potential to add more support, including sending messages to dynamically calculated
people (instead of a hard-coded channel for each probe), and also to add interactivity
with developers through Slack. For example, a message could present the developer
with two buttons, and depending on the input, further actions could be taken by
LosCat automatically.

Modules: Python Code Finder

lots of code.py lots_of_code.py
class CrazyClassk > class(CrazyClass) > func(critical_method)

def unimportant_thing(self, x, y, z):
for i in range(x, y):

z()

def|critical_method
super_critical_thing()

def more_random_stuff(self, a, b, c):
return a(b(c())))

lots of code.py

(parses program, builds AST, traverses AST to 6:5
find specified code block) 7:31

What is an AST? Abstract syntax tree? Define the jargon. Make it make sense to a
friend who would struggle to understand this.

Use case: You want to run a probe on a specific piece of code (for example, a specific
function or class)

The Python AST module takes in a simple syntax to specify code location
class(TestClass): matches class(es) named TestClass

class(TestClass) func(simple_function): function anywhere inside the class
class(TestClass) > func(simple_function): function that’s a direct descendant of the
class

> func(simple_function): only global functions (direct children of root)

Analyzes Python AST in order to find code

Returns the start location and end location (the lines and columns)

(Example: codechange.sh tells you when AST changes, slide notes)

[

{
"name": "myMethodUpdated",

"type": "codeChange",
"config": {

"file": "core.py",
"target": "my_method",
"targetType": "function”

}

"name": "user",
"type": "lastCommitUser",
"config": {

}

"type": "slackBotSimple",
"config": {

"condition"; "myMethodUpdated",
"channel": "[your DM ID]",

"message": "{user} changed my method! What are they doing!"

}

Video demonstration of a message being sent when critical_method is changed, and
not when another message is changed.

https://docs.google.com/file/d/11S3Yquwoh36b1HycUoIeXDZVCcmqW1Nh/preview

Modules: Grammar Fuzzer

e What's a fuzzer?
e Grammar?
e Use case?

What is a fuzzer? What's a grammar? Define the jargon. Make it make sense to a
friend who would struggle to understand this. ANTLR.

Use case: a program takes input in a specific form. We want to automatically test the
program with a wide range of syntactically correct inputs.

Example: a Scheme interpreter

The probe takes a grammar definition (specified in ANTLR format) and a command,
then it generates input from the grammar and passes it to the command via STDIN
All errors are recorded and output from the probe

Fuzzer Example: Grammar

grammar POSTFIX_CALC;

expr t/’/’,,,—»—”"
: NUMBER

| expr ' ' expr ' ' OPERATOR; «_|
OPERATOR @ '+' | '=' | 'x'j| \

// Borrowed from JSON.g4 from antlr4-grammars/

NUMBER
'='? INT ('.' [0-9] +)? EXP?

fragment INT
'0' | [1-9] [0-9]x

// no leading zeros

fragment EXP
[Ee] [+\-]1? INT

An expression can be a number
(i.e. 47 or -17.375)

Or, two expressions followed by an
operator.

Examples:
12+
12+3*

Fuzzer Example: Grammar Output

0.8721
927E6 -0.9 -

9 -3.45e-0 -45.702686618 * -324 * 2.13 - OE-0 * 602502.02 -0.7 * 19.10 * 488e+0 * -
0.398e-63 + *

-0 -8e50 9442 -3e56 * OE-49 * - 8E82 -0.3e9 3 + OE1 + 4.4 0.5184E0 0.15E0 -0 0.2e3 -
0.7e0 0.0EO -0.33E0 8.80654e6 + 8E88 -9.09E+0 -0.3--*0e-6-*-5*0.7e-0 *45.718 + * +
* -+ 0e83 + 0.3663e0 - * -0.4E0 OE157 * 4E9 - + * -0.2E4957 -1 + 0.7TE+4 0.9 - - + - -
-0E-59630 -0.33827 -85.9 13.4 -3.751 * 0.766 * 0 0.6e0 6 * + - 61.49078 -0 * -3.92e-0 -0 -
0.222 0.25e+6 - -67e0++-+-0+**--0.7-~

(generates graph representation of grammar, calculates minimum recursion depth to generate each
node, randomly traverses graph while keeping track of depth)

Fuzzer Example: Probe

Specify grammar file

name': "fuzzOutput",

type": "grammarFuzz",

config": {
grammarFile": "POSTFIX_CALC.g4",
entryRule": "expr"', «— Specify grammar rule to generate
executeFile": "postfix_calculator.py

h Specify what file to run with

bt) generated input
type": "slackBotSimple",

config": {
channel”: "monitoring-slack-test-public”,
message': "{fuzzOutput}

} D — Send results to Slack!

Example running of a the fuzzer probe, including demonstration of how input
producing errors is sent to Slack when there is a bug with the tested code.

https://docs.google.com/file/d/1uwOgz7SM2IeAcjI2exXM_Gpiiz2P8Jcq/preview

Custom module/probe example walkthrough

Idea: On new version release, post a message to Slack announcing the release
and thanking contributors to the release

, o
Version 4 has been released! &>

Thanks to these contributors since the last release:

13 Alice
12 Bob
9 Eve

This walkthrough will highlight different aspects of LosCat to show how it can easily

be extended, in order to add specific desired functionality without much cost to the
developer.

This message is automatically created and sent when version.txt is changed, and the
contributors are calculated since the last git tag.

Custom walkthrough - probe overview

if [version.txt changed]:
postToSlack(
.[new version.txt]..

.[1list of contributors since [last git tag]]..

[version.txt changed] - fileChange default module

postToSlack - slackBotBlocks default module

[new version.txt] - readFile default module

[last git tag] - we need to create this as a new module (lastTag)

[list of git contributors since [...]] - we need to create this as a new module
(committersSince)

Custom walkthrough - modules

"lastTag": {

"command": "cd {HEAD} && git describe --tags --abbrev=0"
I
"committersSince": {

"command": "./scripts/probes/committers.sh {dir} {tag}"

lastTag - simple bash shell command, using {HEAD} to cd into the directory where the
new version of the code is

committersSince - implemented in an external bash shell script, needs two
parameters, {dir} for the directory of the repo and {tag} for when to calculate
contributors since.

committersSince is a bash script, but easily could be created in Python or whatever
the developer is familiar with.

Custom walkthrough - committersSince bash script

Bash script that lists contributors to a git repo Output (commit count, name):

since a given tag
$./scripts/probes/committers.sh [directory] [tag]

#!/bin/bash

13 Alice
cd "$1" || exit

12 Bob
committers=$(git shortlog "$2"..HEAD -sn)

9 Eve

echo "$committers"

Actual script isn’t really important, other than when given parameters it prints out the
list of contributors. The output can be saved and used by another module.

(This could be accomplished without an external shell script, but this is used as an
example.)

Custom walkthrough - probe
[{

{ \ "name": "contributors"”,

"name": "versionBump", \ "type": "committersSince", contributors =
"type": "fileChange", verS|onBump = "config": { [|iSt of contributors
"config": { [whether version.ixt "dir": "{(HEAD}", .

"file": "version.txt" changed in this update] "tag": "{oldTag}" since [oldTag]]
} }

b - j h

{ {

"name": "newVersion", f \ "type": "slackBotBlocks", ﬁegf;i;igfrﬁ;
"type": "readFile", . "config": { postToSlack(
"config": { new\Version = "condition": "{versionBump}", --[newVersion]...
X .) ...[contributors]..
"path”: "version.txt" [contents of version.txt] "channel": "finsert channel ID here]",)
} "message": "Version {newVersion} released!",

13 K j "blocks": "[{\"type\": \"section\" \"text\": {\"type\":

{ s ™ \"mrkdwn\" \"text\": \"Version ‘{newVersion} has been released!
"name": "oldTag", oIdTag = :tada:\"}},{\"type\": \"divider\"},{\"type\": \"section\"\"text\": {\"type\":
"type": "lastTag", [the last git tag \"plain_text\",\"text\": \"Thanks to these contributors since the
"config": {} last release:\\n{contributors}\",\"emoji\": true}}|"

Y k(release)]))

}
1

Here the different modules, including default ones, are combined to create the probe.
The name field is used to save the output of a module to use it if necessary later.

Note the condition field for slackBotBlocks - the message will only send if
{versionBump} has changed - what we want!

slackBotBlocks blocks field is complicated because it’'s a Block-Kit formatted
message, which lets us make it look a bit better. Important parts (in bold) are that we
include {newVersion} and {contributors}.

Custom walkthrough - result

. A)
Version 4 has been released! &=

Thanks to these contributors since the last release:
13 Alice

12 Bob

9 Eve

It works! Yay!

This hopefully has been a good example of how a developer with a specific desire for
code monitoring and automation on changes can easily create what they want in
LosCat. We’ve shown a few different aspects of the process, including figuring out
what modules are necessary, simple module creation, more advanced module
creation, and how to put together the final probe.

If you’ve ever worked on a group project it is very possible that you had a moment
where you wished you could be notified when something specific changed. If you've
worked with code, this is even more likely. We've tried to have LosCat let you bring
these into reality easily.

< C @ © & saad.sebastian.io/probds?repo=saad_example

Probes <« cC R 906 Iocalhost.EOBO/p'o

We b I n te rfa Ce All modules currently conﬁgure Pr()bes

[e
. All modules currently configure for saad
a .

(S C ® © O localhost:8080/probelogs 0
[

Probe logs

1 sleepPrint 1588871468 1588871468 None time 2 message hello+world+13 b" b'hello+world+13\n' {
2 reverse 1589145281 15201457%1 Nana ctrina tacti]lLacravaer h!' hiravarcallitcatin!
3 slackBotSimple 15| ¢ C ® © #& saad.sebastian.io/modules

successfully: The request t
4 lastCommitUser us {
5 lastCommitMessag Modules "type"
6 lastCommitUser ug :
7 lastTag tag 158083 All modules currently configured
8 fileChange diff 15¢
9 fileChange version “timeout": 4
10 lastCommitUser 1
11 lastCommitEmail
12 readFile new Vers
13 committersSince

ing-slack-test-public”,

string 1

checkComplexity path target threshold (
tile HEAD-1 tile

< C ® | © ® localhost:8080/running

Running Probes

All probes currently running

© {'headers': {'type': 'sleepPrint', 'status': 'Running', 'created': datetime.datetime(2020, 5, 20, 18, 7, 49, 453808), 'started': date

We have a website! It doesn’t look great, but it is functional, which is the important
part for now.

/probes&repo=?{repo_name} shows probes for the given repo that LosCat is watching
(we support multiple repos per instance of LosCat)

/probelogs shows the logs of all run probes. Helpful for checking what/why a probe
output and debugging.

/modules shows all the configured modules, and by filling in the fields, you can trigger
a module.

/running shows the currently running probes. (Potential for a kill/restart/etc. button
here, but we didn’t get to that)

saad repo was updated by {user}:\n""{message

IDE Plugin Interface

e Plugin for JetBrains IDEs (Intellid, PyCharm, etc.) which allows for easily
adding probes to a project
e Automatically generate probe JSON files

IDE Plugin Interface

VCS Window Help
Configure Probes > Add Probe

Tasks & Contexts » Edit Probes

= o B
S as Live Template
Save File as Template...
Save Project as Template...
Manage Project Templates...
Generate JavaDoc...
IDE Scripting Console
Create Command-line Launcher...
Create Desktop Entry...
XML Actions >
JShell Console...

& Groovy Console...

lastCommitUser

lastCommitUser
lastCommitEmail

codeChange

readFile

checkComplexity
slackBotBlocks
fileChange
lastCommitMessage

Probe Name sample

Target foo v

TargetType function v

File test.py

Condition None v
m Add Another Probe

Internals: Running A Probe

"codeChange": {
"command": . "./scripts/probes/code_change.sh @/@@@C}@)

}

s

{ Extra Bindings

"name" : "simpleCodeChange",
"type" : "codeChange", 1 | (HEAD): I
"config" : { <—

" no, o {HEAD~1}: N

"targetType" : "N - {simpleCodeChange}: “True”
||target|| . " "

}

2

Internals: Running Multiple Probes

i {

Code Change

Commit User }

Commit Message }

>£<

}E(

} A

[Slack Message]
37

|

Internals: Running Multiple Probes

P e oo |
N,

Internals: Github Webhooks

Sends request

LosCat {1 "eb Endpoint Github

Pulls code, then runs

probes etc...
&
&
]
8
&

Programmer

How does LosCat known when to run probes on your code?

Github has webhooks: you can easily setup your repo so that Github makes a POST
request to a given URL whenever the repo is pushed to

When LosCat receives this request, it clones the repo, runs the probes, etc!

Internals: Github Webhooks
Super easy to set up!

Webhooks / Manage webhook
We'll send a POST request to the URL below with details of any subscribed events. You can also specify which

data format you'd like to receive (JSON, x-www-form-urlencoded, etc). More information can be found in our
developer documentation.

Payload URL *

http://saad.sebastian.io/run

Content type

application/json $

Secret

Repository Management

LosCat Code

LosCat Server

Modules [~
A
~
Slack Code Email
Bot Finder Sender
Fuzzer You can add more!

LosCat waits for
changes to code

Probes act on user
code using
modules

—_—

—_—
—_—

User code

User Repository

__——-1 Probes
N
P
Send a Test code Give a
Slack with shoutout on
message randomly Slack to top
when generated contributors
function is input
changed

Combine modules to do what you want!

Repository Management

LosCat Code

LosCat Server

Modules

User code

User Repository

Probes

Repository Management

User code

User Repository

Probes

Modules

Repository Management

LosCat Code

LosCat Server

Modules

&

User code

User Repository

Probes

Modules

Repository Management

LosCat Code User code
LosCat Server User Repository
e Server Config T
Overrides
User Config PrObeS
Config < Config <
N N

Repository Management

User Code

~

LosCat Server

4

User Code

— | User Code

User Code

Internals: Server Configuration/Deployment

Running on an AWS EC2 instance (which runs an Amazon variant of Redhat)

e Set up as a systemd service
o Automatically restarts on crash/server restart

o Service has a dedicated user with restricted permissions (can only modify the LosCat
directory)

o Runs on port 8080 (so as to not need sudo) and has forwarding from port 80 to 8080
e Python service listens for HTTP requests at a specific address. When hit, it
pulls new code from Github, installs dependencies using pip, and it replaces

the current process with the new code

o Github is setup to hit the address whenever our repo is updated
o Deployment is completely automated

@ saad W 21spm
4 saad repo was updated by Anders Bruihler.

Code refornats
Whited
Hooray!
@ saad #® sisem
4 s2ad repo was updated by Sebastian Kimberk:

Merge branch 'master’ of
https: //gi thub. con/skimberk/saad

Version 4 has been released! £

Thanks to these contributors since the last release:

Conclusion e

@ saad #® 520Pm

4 saad repo was updated by Sebastian Kimberk: L C t

/{ Web Endpoint

9 Eve

Sends request

Github

@ saad w0 52
4 Davids test probe worked in saad_example.

LosCat Code

LosCat waits for

changes to code

LosCat Server [————

Probes act on user

code using

modules
Slack Code Email
Bot Finder Sender

‘You can add more!

Pulls code, then runs
probes etc...

User code

N User Repository

j . —‘| Probes

Send a
Slack
message
when
function is
changed

Test code
with
randomly
generated
input

Give a
shoutout on
Slack to top
contributors

Combine modules to do what you want!

apoo saysnd

Programmer

Ari Conati changed critical_method()! Better make sure things are okay!

Thanks

Dave Musicant

The Carleton College CS Department
Zoom, Slack, & Github

Friends and Family

You

Dave Musicant - our Comps advisor
Zoom, Slack, & Github - for allowing us to work together remotely

References

e “Lightweight source code monitoring with Triggr,” Automated Software
Engineering 2018
o <https:/dl.acm.org/doi/10.1145/3238147.3240486>
e “CodeAware: sensor-based fine-grained monitoring and management of
software artifacts,” International Conference on Software Engineering 2015
o <https://dl.acm.org/doi/10.5555/2819009.2819099>

e “Grammarinator: a grammar-based open source fuzzer," A-TEST 2018
o <https://dl.acm.org/doi/10.1145/3278186.3278193>

Triggr - inspiration paper
CodeAware - previous version of Trigger created by the authors

https://dl.acm.org/doi/10.1145/3238147.3240486
https://dl.acm.org/doi/10.5555/2819009.2819099
https://dl.acm.org/doi/10.1145/3278186.3278193

Images

Fuzzer Cat: <https://icatcare.org/advice/helping-your-new-cat-or-kitten-settle-in/>

Word icon: <https://commons.wikimedia.org/wiki/File:Microsoft Office Word (2018%E2%80%93present).svg>

Profile: <https://publicdomainvectors.org/en/free-clipart/Anonymous-person/59504.html|>

Code windows: <https://publicdomainvectors.org/en/free-clipart/Programming-language/70504.htm[>

Programmer + computer: <https://publicdomainvectors.orag/en/free-clipart/Computer-programmer-from-back/80570.htm|>
Business people: <https://publicdomainvectors.org/en/free-clipart/Professional-people-silhouette/81904.html>

Smiley Face: <https://www.publicdomainpictures.net/pictures/130000/velka/clip-art-smiley-face.jpg>

Suspicious Face: <https://freesvg.org/img/Unknown-Smiley-Face.png>
Sad Face: <https://www.goodfreephotos.com/vector-images/unhappy-face-vector-clipart.png.php>

https://icatcare.org/advice/helping-your-new-cat-or-kitten-settle-in/
https://commons.wikimedia.org/wiki/File:Microsoft_Office_Word_(2018%E2%80%93present).svg
https://publicdomainvectors.org/en/free-clipart/Anonymous-person/59504.html
https://publicdomainvectors.org/en/free-clipart/Programming-language/70504.html
https://publicdomainvectors.org/en/free-clipart/Computer-programmer-from-back/80570.html
https://publicdomainvectors.org/en/free-clipart/Professional-people-silhouette/81904.html
https://www.publicdomainpictures.net/pictures/130000/velka/clip-art-smiley-face.jpg
https://freesvg.org/img/Unknown-Smiley-Face.png
https://www.goodfreephotos.com/vector-images/unhappy-face-vector-clipart.png.php

@ saad e 1
4 saad repo was updated by Anders Bruihler:

Code refornats
Whited
Hooray!

@ saad #® sisem

4 s2ad repo was updated by Sebastian Kimberk:

Merge branch 'master’ of
https: //gi thub. con/skimberk/saad

@ saad #® 520Pm
4 saad repo was updated by Sebastian Kimberk:

added fuzzer repo url to config

@ saad W s20pm
4 Davids test probe worked in saad_example.

LosCat Code

LosCat Server

il r—
- Send a
Slack

Slack Code Email
Bot Finder Sender

‘You can add more!

Questions?

LosCat

/{ Web Endpoint

Version 4 has been released! £

Thanks to these contributors since the last release:
13 Alice

12 Bob

9 Eve

Sends request

Github

Pulls code, then runs
probes etc...

User code
LosCat waits for

changes to code

User Repository

Probes act on user

et [‘I Probes

message
when

function is

changed

Test code
with
randomly
generated
input

shoutout on
Slack to top
contributors

Give a

Combine modules to do what you want!

apoo saysnd

Programmer

Ari Conati changed critical_method()! Better make sure things are okay!

