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Abstract

Understanding the evolutionary relationships between
organisms by comparing their genomic sequences is a focus
of modern-day computational biology research. Estimat-
ing evolutionary history in this way has many applications,
particularly in analyzing the progression of infectious, vi-
ral diseases. Phylogenetic reconstruction algorithms model
evolutionary history using tree-like structures that describe
the estimated ancestry of a given set of species. Many meth-
ods exist to infer phylogenies from genes, but no one tech-
nique is definitively better for all types of sequences and
organisms. Here, we implement and analyze several pop-
ular tree reconstruction methods and compare their effec-
tiveness on both synthetic and real genomic sequences. Our
synthetic data set aims to simulate a variety of research con-
ditions, and includes inputs that vary in number of species.
For our case-study, we use the genes of 53 apes and com-
pare our reconstructions against the well-studied evolution-
ary history of primates. Though our implementations of-
ten represent the simplest manifestations of these complex
methods, our results are suggestive of fundamental advan-
tages and disadvantages that underlie each of these tech-
niques.

Introduction

Phylogenetic Trees

A phylogenetic tree, commonly referred as a tree of life,
is a widely accepted representation of evolutionary relation-
ship among species on the Earth [2]. The concept of a tree
of life was first introduced by Charles Darwin in 1836 af-
ter his trip to Galapagos islands (Figure 1). Each node in a
tree is called a taxonomic unit, or “taxa,” for short. Internal
nodes in a tree represent most common ancestors of their
direct child nodes. The length of a branch in a phylogenetic
tree is an indication of evolutionary distance. Depending

on the particular reconstruction method used, branch length
usually indicates either the estimated time it took for one
species to evolve into another species, or the genetic dis-
tance between a pair of an ancestor and its descendant. We
are particularly interested in bifurcating phylogenetic trees,
meaning an ancestor can only have two direct descendants.

Phylogenetic trees are useful not only for describing the
evolutionary history of multiple species but also for solving
other real world problems. For instance, phylogenetic anal-
ysis of a virus can sometime help us track down the source
of infectious, viral diseases such as SARS [27]. Phyloge-
netic trees are also used to find natural sources of new drugs
or to develop effective treatments against diseases that are
hard to cure [34]. Reconstruction also allows us to make
predictions about poorly understood or extinct species. All
these applications are dependent on our ability to recon-
struct phylogenetic trees from information available to us.

Here, we implement, apply, and compare several pop-
ular multiple sequence alignment algorithms (MSAs) and
phylogenetic reconstruction methods. Because these algo-
rithms are so commonly applied, state-of-the-art implemen-
tations for each exist. We acknowledge our programs lack
the nuance and optimizations found in these refined and
expert versions. However, we argue that results derived
from our bare-bones implementations reflect basic advan-
tages and disadvantages that underlie each method.

All phylogenetic algorithms examined by our group can
be labeled as “cladistics.” Cladistic methods attempt to
identify relationships based on shared, inherited character-
istics amongst individuals. Cladisitcs group organisms us-
ing similarities derived from common ancestors and split-
ting events, with evolutionary history in mind. In contrast
to cladistic methods, “phenetic” methods shift their empha-
sis to morphological similarities independent of ancestry.
Generally, phenetic methods are not considered to be state-
of-the-art and we do not consider them further here.

For our study, we execute our algorithms on both syn-
thetic data and real-world genetic sequences. Synthetic
data is useful because the underlying evolutionary history
can be known completely. We implement a data generator



Figure 1: The first phylogenetic tree drawn by Charles Darwin on
his notebook on mid-July, 1837.

that creates a random, but exactly determined, phylogenetic
tree, and outputs genomic sequences that might be produced
given that tree as the true evolutionary history.

Due to a lack of commonly agreed upon historical data,
it is usually impossible to determine whether or not a con-
structed phylogenetic tree is accurate when using actual ge-
nomic sequences. One of the few areas within phyloge-
netics wherein experts generally agree is the evolutionary
history is apes. We choose to use apes as our study case
to examine algorithmic performance because there exists a
commonly accepted baseline to compare our results against.

Phylogenetics is a field with significant nuances and
complexity. For instance, there are multiple issues con-
founding tree construction: chiefly homoplasy, whereby
some nucleic characters are likelier to evolve convergently,
and horiztonal gene transfer, whereby genes may be trans-
ferred outside the parent-child relationship. Because each
of our bare-bones implementations makes simplifying as-
sumptions that ignore these complexities, applying these
methods to real genes might help us assess their sensitiv-
ity to these uncontrolled for processes.

Project Goals

There is no single best algorithm in phylogenetic recon-
struction. It’s possible to produce pathological cases where
certain algorithms perform better than others, and there ex-
ists substantial variability in potential inputs, depending on
the specific organisms to be evaluated. Furthermore, explo-
ration is too costly with large numbers of lengthy sequences
for exhaustive search to be feasible. To explore an entire

set of possible topologies, for instance, a problem with n
input species would require (2n− 5)!/[(n− 3)!2n−3] con-
structions [24]. Thus, it is our goal to explore the contexts
in which our algorithms are most effective, analyzing their
efficiency and efficacy in producing a tree of relationships
amongst a set of taxa.

After conducting a literature review and determining
which types of algorithms were most frequently utilized,
we decided to implement the following six phylogenetic re-
construction algorithms, three multiple sequence alignment
algorithms, and two tree comparison methods.

• Multiple Sequence Alignments:

– Clustal-W (CW)
A progressive alignment method which com-
putes a “guide tree” based on possible all pair-
wise sequence alignments. The guide tree is then
collapsed to produce the final multiple sequence
alignment.

– MUSCLE (MSC)
An iterative alignment method similar to Clustal-
W that foregoes computing initial pairwise align-
ments in favor of later iterative improvement.

– Center Star (CS)
A simplistic alignment method that identifies the
“center” sequence which all other sequences are
aligned to. The pairs of the center and every
other sequence are combined into the final multi-
ple alignment.

• Tree Reconstruction Algorithms:

– Neighbor-joining (NJ)
A distance matrix method that attempts to recon-
struct a tree through an agglomerative clustering
approach.

– Maximum Likelihood (ML) with hill-climbing
and progressive topology searches
A method which uses known mutation rates be-
tween nucleotides to recursively evaluate the
“likelihood” of a given tree. We use the principle
of ML to produce a final tree using two topol-
ogy search heuristics, “hill-climbing” and “pro-
gressive” (referred to as MLH and MLP, respec-
tively).

– Maximum Parsimony (MP) with hill-climbing
and progressive topology searches
An evaluation based in the concept of parsimony,
wherein trees with the least mutation required to
group taxa are highly valued. We use the princi-
ple of MP to produce a final tree using two topol-
ogy search heuristics, “hill-climbing” and “pro-
gressive” (referred to as MPH and MPP, respec-
tively).
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– Monte-Carlo Markov Chain (MCMC or MC)
An implementation of the Metropolis-Hastings
algorithm which allows us to sample from a dis-
tribution of the most likely evolutionary trees.

• Tree Comparison Metrics:

– Pairwise Pathlength Distance (PPLD)
A distance metric that relies on the distances be-
tween all pairs of species in a given tree.

– Quartet Distance (QD)
A distance metric that measures the topological
distance between input trees using quartet reduc-
tions.

A total phylogenetic reconstruction consists of a se-
quence alignment step followed by a tree reconstruction
step. In total, we have 18 possible phylogenetic reconstruc-
tion methods, given our three sequence aligners and our six
tree reconstructors.

Previous studies of the relative efficiencies and correct-
ness of these algorithms are extensive but inconsistent.
Most studies reach a consensus that distance-matrix based
algorithms (i.e. NJ) generally outperform MP in both cor-
rectness and efficiency, regardless of nucleotide substitution
rates. This is because of MP only uses sequence informa-
tion from informative sites, and because it cannot adjust for
multiple mutations [41]. Other studies claim that with uni-
form rates of evolution among branches, distance methods
are inferior to parsimony both with short sequences with
low rates (∼ 0.01) and with long sequences with high rates
(∼ 0.1), and were slightly superior in the other cases [25].

In comparing NJ and ML methods, study results also
vary. Saito, Naruya, and Imanishi maintain that when
constant rates of nucleotide substitution rates among sites
are assumed, the NJ method showed slightly better perfor-
mance than ML, but inferior to ML when substitution rates
varied drastically [37]. In contrast, Hasegawa, Masami, and
Fujiwara find that NJ is also robust to heterogeneity of evo-
lutionary rates among sites given that heterogeneity is con-
sidered in estimating the multiple-hit effect [23].

In comparing estimations of tree branch lengths, previ-
ous work suggests that when a low nucleotide substitution
rates (∼ 0.01) is assumed, NJ, MP, and ML are equally suc-
cessful, while for higher rates (∼ 0.1), ML is slightly better
[25].

Markov Chain Monte Carlo (MCMC) methods are use-
ful when an estimate of the posterior distribution of phy-
logenetic trees under specific prior assumptions is desired
[39]. Methods utilizing MCMC are easily extended to
Bayesian analysis, and, consequently, tree reconstructions
using this algorithm are often phrased in that context. Com-
pared with NJ, MP, and ML methods, MCMC has the ad-
vantage of being able to create a distribution of trees and

constructing a “confidence set.” In addition, this distribu-
tion of trees can be used to study the variability in any aspect
of the phylogeny that is of interest. For instance, if you were
interested in computing the variability in total tree diameter,
MCMC could provide draws from an entire tree distribution
to compute statistics and confidence intervals from. How-
ever, it gives poor estimates of the posterior probability of
any individual tree when the number of taxa is large [39].

In terms of computational time, Saito, Naruya, and
Imanishi conclude that NJ has the best performance [37],
while others propose that when using different distance
measures and nucleotide transition/transversion rate (R), NJ
and ML perform differently [44]. When large data sets are
considered, MCMC can be quite computationally intensive
[39].

Our study aims at addressing these inconsistencies in the
current literature through comparative efficiency and cor-
rectness analysis of these algorithms.

Case Study

Phylogenetic trees are useful tools for inferring informa-
tion about public health issues. In the past, the Center for
Disease control has used phylogenetic analyses to under-
stand the origins of a lethal betacoronavirus associated with
kidney and respiratory complications [8]. Also, Burr de-
scribes how phylogeny reconstruction has been used to in-
fer useful information regarding quickly evolving diseases,
including HIV and influenza [5].

Because of the potential for phylogenetic reconstruction
algorithms to uncover useful information regarding pub-
lic health problems, another goal of our project is to ap-
ply our algorithmic studies to a real-world data set. Our
case-study involves examining the genomic sequences of 53
apes. While the evolutionary properties of apes and viruses
differ considerably, the relationships between primates are
far better understood. Furthermore, there exist commonly
accepted ape phylogenies against which we can compare
the outputs of our algorithms. Executing our algorithms on
real data allows us to determine our different algorithms’
sensitivity to the previously addressed major evolutionary
complications, homoplasy and horizontal gene transfer.

Parallelism

Many phylogenetic tree reconstruction algorithms are
particularly well suited to parallelization. Previous work
demonstrates the capacity of parallelism to meaningfully
speedup phylogenetic reconstruction algorithms. For in-
stance, Schmidt et al. provide TREE-PUZZLE, a soft-
ware package containing parallelized components of the
ML reconstruction algorithm [40]. For a large reconstruc-
tion problem, it took their sequential algorithm 5.5 months
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to terminate, whereas their parallel implementation com-
puted the same tree in two weeks using only 12 threads.
For sequence alignment algorithms, there exist parallel im-
plementations of CLUSTAL family algorithms that achieve
10x speedup when running on 16 CPUs [6]. Clearly, there
are situations in which parallelism can be meaningfully ap-
plied in the reconstruction of phylogenies.

For this project, our goal is not to compete with the ex-
isting, state-of-the-art implementations; we do not approach
alignment and tree construction purely from the perspective
of performance increase. Rather, we plan to take advantage
of instances where parallelism offers obvious potential for
improvement. For many of our tree reconstruction meth-
ods, site independence between adjacent genomic sites is
assumed, and separate operations are executed for each site.
This provides us a means of normalizing our parallel anal-
ysis, and simplifies our question significantly: which of our
implementations are able to parallelize over site indepen-
dence most effectively?

For programming on multi-core processors, there are
several popular libraries available. We choose to use
OpenMP, a well-supported API that supports shared mem-
ory parallelism on many popular multi-core processor ar-
chitectures.

Multiple Sequence Alignment Algorithms

In order to reconstruct phylogenetic trees from multiple
sequences of different lengths, the sequences first need to be
aligned to uniform length. Pairwise alignment, where gaps
are inserted into two different strings, can be solved by a
simple dynamic programming algorithm which guarantees
an optimal alignment for user defined cost parameters. The
best way to align multiple sequences, on the other hand, is
an open question, and we aim to analyze several popular
methods.

ClustalW

Introduced in 1994 [45], Clustal-W is considered to be a
so-called “progressive alignment” algorithm. At the time of
its inception, it represented dramatic progress in alignment
sensitivity combined with other existing tools, and is still
the most widely used MSA program [11]. There are three
main steps of the algorithm:

1. The Distance Matrix/Pairwise Alignment. Given n
sequences, all

(
n
2

)
pairwise alignments are computed.

This step is accomplished with a simple dynamic pro-
gram, as is a standard practice [45]. Optimal alignment
is guaranteed with this approach given a table of scores
for matches and mismatches between sequence char-
acters and penalties for insertions or deletions. The

scores of each pair of alignments are then calculated
using the a simple sum-of-pairs (SP) measure, and a
distance matrix is constructed based on these scores.

2. Create a Guide Tree. Next, a “guide tree” is con-
structed. This structure is used to guide the rest of the
process. This guiding tree is calculated from the dis-
tance matrix in step 1, using Neighbor-Joining.

3. Progressive Alignment Using the Guide Tree. This
final step is accomplished using a series of pairwise
group alignments. Progressively larger groups of se-
quences are aligned following the branching order in
the guide tree we created in the second step using a dy-
namic program. Instead of defining a penalty matrix,
to align groups of sequences, a site-wise frequency
function over all sequences in a group is defined. Af-
ter the entire tree has been “collapsed” up from tips to
root, we are left with a set of n aligned sequences, each
with the same total length [45].

Merits

The main advantage of the progressive strategy used by
ClustalW is its speed and relative robustness [30]. ClustalW
also requires much less memory than other programs.
Therefore, it is suggested that it should be used on align-
ing small number of unusually long sequences [11].

Critiques

Because it was one of the first popular multiple sequence
alignment algorithms, many improvements have been made
to CW. For instance, Clustal-W has been improved through
better decision making during multiple alignment (e.g.
when to change weight matrix) and the accuracy and appro-
priateness of parameterization. However, no significant im-
provements have been made since 1994, and several mod-
ern methods (e.g. MAFFT, MUSCLE, T-COFFEE) claim to
achieve better performance in accuracy, speed or both [11].

Although widely used in a variety of cases, CW suffers
from its greediness, as errors made in initial alignments
cannot be corrected later when the progressively more se-
quences are merged together[43]. In addition, there is no
way of quantifying whether the resulting alignment is good,
or if the alignment is correct due to the algorithm’s greedy
nature.

MUSCLE

As the exploration of phylogenetic reconstruction has
advanced, so too has the desire for highly scalable align-
ments. MUSCLE is an approach strikingly similar to CW
with some modifications made to quickly reach the align-
ment phase. Introduced in 2004 [10], MUSCLE has been
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gaining traction among the various MSA’s for its use on
alignments of large data sets of short sequences. MUSCLE
has three main phases:

1. Draft Progressive. The first iteration focuses on speed
over accuracy, quickly transforming the raw sequences
into sloppily aligned sequences.

(a) kmer Distance. A distance matrix is produced
by converting the basic sequences to their amino
acid sequences. From there, each sequence is
given an identity of the frequencies of k-tuples
in the amino acid chain. Euclidean distance is
used on the series of frequencies to determine
distances amongst the sequences.

(b) Guide Tree 1 Using a heuristic to cluster the se-
quences, the guide tree is formed. In this case,
Neighbor Joining is used to compute a guide tree.

(c) Progressive Alignment The alignments are pro-
duced identically to CW with the exception that
a differing scoring system [12] is employed. The
goal of this modified scoring system is that it ac-
counts for gaps in sequences more accurately.

2. Improved Progressive. Now that the sequences are
aligned, the process will be repeated using a different
metric to improve the alignments.

(a) Kimura Distance. Every distance between se-
quences is computed using the Kimura met-
ric. Essentially the distance becomes how many
matching characters each sequence shares.

(b) Guide Tree 2. The guide tree is reproduced on
the new distances in the same manner as before.

(c) Progressive Alignment. The alignment process
is repeated here as well, with the opportunity to
only realign on sections of the new guide tree that
differ from the old one to cut down on processing
time.

3. Refinement. Here is where MUSCLE diverges most
from CW. We improve the alignment through an itera-
tive process. Upon visiting some edge while traversing
the current guide tree, we cut the tree into two sub-
trees, realigning their profiles individually, reconnect-
ing them, and realigning as a whole. If the action has
netted an improvement, the change is kept, otherwise
the refinement is considered to be done. This process
is repeated until convergence or user satisfaction.

Merits

MUSCLE is best for large data sets (on the order of hun-
dreds of species) with short length sequences [11], where

the process of eliminating the initial pairwise alignment out-
weighs the cumbersome refinement process.

Easily the most defining feature of MUSCLE compared
with CW is the refinement period, which improves upon the
weak exploration of CW. This feature should lead to more
accurate alignments.

Critiques

While some improvements have been made over the basis
of CW, the refinement phase is still highly expensive to run,
with little guarantee of dramatic improvement. The refine-
ment phase caps the performance at an O(n3L2) time, for
n species of maximum sequence length L.

Center Star

Center Star does not construct a guide tree or use cluster-
ing methods in creating a multiple sequence alignment [22].
Instead it identifies the most “central” sequence which when
aligned to every other sequences has the lowest total dis-
tance between itself and all other sequences. This method
is by far the simplest and near the fastest of the mentioned
algorithms, and can be shown to produce an alignment no
worse than two times the optimal alignment’s total distance.
Center star operates as follows:

• Center Sequence Identification. By computing an
n × n matrix of the hamming distance between each
sequence and finding the sequence which minimizes
this value, the center of the alignments can be found.

• Center Sequence Matching. Every sequence is pair-
wise aligned to the center sequence.

• Combination. By combining the center sequences
between each pair alignments that have been aligned
uniquely we can find the conglomerate sequence,
which gains the spacing of both its component cen-
ter sequences. From there we align the matched se-
quences to the conglomerate and repeat until all the
sequences have been combined into a multiple align-
ment.

Merits

Center Star is easily implemented and runs in O(n2L2),
where n is the number of input sequences, and L is the
length of the longest input sequence.

Critiques

The algorithm can be described as a “quick and dirty”
method of generating a multiple alignment with only the
guarantee that it is at most twice the optimal alignment’s
accuracy.
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Sequence Alignment Evaluations

Using our experimental set up, we generated several
alignments on the same set of sequences using the listed
alignment methods. We must note that our sequences were
aligned using the author of the MUSCLE algorithm’s avail-
able code and not our own implementation of MUSCLE.
Our evaluation of the success of an alignment uses the total
distance between every possible pair of sequences in the set,
multiplied by the length of the alignment to weight longer
alignments as worse than shorter ones. Formally, let L be
the sequence length, α be the total number of non-matching
indices between two sequences, and β be the total number
of non-dual-gap positions.

distance =
αi,j

βi,j
∗ L

The total distance is simply the sum of distance between
all possible pairs of sequences in the set. We completed
14 runs for each alignment method for several numbers of
sequences. Using the distance equation the performance of
Clustal-W (CW), Center Star (CS), and MUSCLE (MSC)
were tested against each other in a student’s T test to obtain
the following t-statistics:

Table 1: Alignment Method Performance Check

Method Comparison Real Synthetic
CW-CS -2.265 -0.666

CW-MSC -8.252 -2.016
CS-MSC -5.899 -1.309

Each entry relates to the significance of the former
method being worse than the latter using our evaluation.
Hence in the analysis of the real sequences of DNA every
result was significant at p = .05 meaning we get a hier-
archy of CW > CS > MSC in terms of accuracy on
real data, with respect to our test statistic. However on the
much shorter synthetic sequences of 1

8 length the real data
we only see significance at the same level in the CW-MSC
comparison.

Tree Reconstruction Algorithms

Neighbor Joining Method

Reconstruction of phylogenetic trees generally involves
inference of phylogenies consisting of large amounts of
gene sequences. First proposed by Naruya and Masatoshi
[38] the neighbor-joining (NJ) method is frequently used
to construct phylogenetic trees of life because of its known

accuracy and relatively fast computational speed. The use
of neighbor-joining is so wide spread, in fact, that it has
become a common baseline to compare newly proposed re-
construction algorithms to [29].

Neighbor joining itself is a very simple algorithm. First,
a distance metric is used to compute pair-wise distances be-
tween all possible pairs of input sequences, a common prac-
tice in so-called “distance matrix” methods. Based on this
distance matrix, a similarity metric is used to find the two
most similar sequences, which can be thought of as nodes
in the eventual phylogenetic tree. Once discovered, these
two sequences, now considered as leaf nodes, are connected
by a common parental node. The distance between this new
parental node and all other nodes represented in the distance
matrix is estimated. This process continues, until there are
only two nodes remaining. At this point, the algorithm has
greedily and hierarchically constructed a phylogeny.

We determine the asymptotic running time of our imple-
mentation as follows. For a dataset of n species, O(n2)
pairwise distance computations must be executed, which
take O(m) time, where m is the length of sequence. After
the distance matrix is computed, O(n) node merges must
be executed. For each node merge, O(n2) distance compu-
tations must be executed to determine the average distance
between all tips from each other. This leads to a running
time of O(mn2 + n3).

Merits

Tamura, Nei, and Kumar demonstrated the accuracy of NJ
trees for inferring very large phylogenies using the reports
of their computer simulations [43]. Given pairwise dis-
tances estimated using biologically realistic models of nu-
cleotide substitution, reports show that the accuracy of NJ
trees decline only by about 5% when the number of se-
quences used increases from 32 to 4,096 (128 times) even
in the presence of extensive variation in the evolutionary
rate among lineages or significant biases in the nucleotide
composition and transition/transversion ratio. These results
suggest the promising prospects for inferring large phylo-
genies using the NJ method.

Furthermore, the use of the NJ method has some appeal-
ing theoretical guarantees. Atteson shows that, for appro-
priately long and accurate multiple sequence alignments,
NJ will produce the correct phylogeny for certain data; a
formal bound is provided for the requirements of the inputs
[1]. Though this is an important result regarding the theo-
retical guarantee of this algorithm, the formal conditions re-
quired for data inputs are often not met in practice. Despite
this, NJ still performs exceptionally well. Mihaescu et al.
[29] provide an extension of Attesons theorem that explains
this apparent discrepancy, and quantify the usefulness of NJ
in practice.
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Finally, NJ is considered one of the most computation-
ally efficient algorithms. As previously addressed, it runs in
O(n3) [9].

Critiques

A distance-based method, NJ has the disadvantage of dis-
carding the actual character data in the sequences [3]. Since
it is designed to produce only one tree, it can obscure am-
biguities in data. Although ambiguities can be uncovered
by using resampling methods, if used alone, NJ programs
may give misleading bootstrap frequencies because they do
not suppress zero-length branches and/or are sensitive to the
order of terminals in data. In addition, resampling can be
employed with parsimony methods, which are far more ef-
ficient than NJ methods [15].

Markov Chain Monte Carlo for Bayesian Analysis

Traditional methods for phylogenetic inference select a
single “best” tree, while a Bayesian approach expresses the
uncertainty in phylogeny and in the parameters of the se-
quence mutation model with a posterior probability distri-
bution [26]. The computational aspects of the problem can
be efficiently solved by the Markov Chain Monte Carlo
(MCMC) algorithms. While the Bayesian approach is the
most commonly used Markov Chain based reconstruction
method, because of its relative complexity, we assume a
uniform prior, and use the Metropolis-Hastings algorithm to
simply draw a phylogeny from a distribution proportional
to tree likelihood. Though many applications of MCMC
also utilize a uniform prior, our approach differs because
we don’t attempt to infer mutation rates and other complex
parameters. This makes a our Bayesian analysis more sim-
ilar to a likelihood-based inference because the distribution
we draw from is unaffected by the prior [36].

MCMC technique was first introduced by Yang and Ran-
nala in 1997 [49]. It was later developed by Mau, New-
ton, and Larget [28]. We adopted a simplified version from
Larget and Simon [26]. In their original paper, they pre-
sented two MCMC algorithms: GLOBAL, in which all
branch lengths in topologies are adjusted with every cycle,
and LOCAL, which allows for the same changes but with
different probabilities. After an initial burn-in period, the
Markov Chain runs for 2,000 cycles with GLOBAL fol-
lowed by LOCAL to complete tree parameter proposals
and outputs the final tree. We implemented both algorithms
under the molecular clock assumption.

Metropolis-Hastings Algorithm

The Metropolis-Hastings (M-H) algorithm is used to sam-
ple from distributions that are difficult to sample from di-
rectly. In many cases, a function proportional to the desired

underlying probability distribution is known; in the case of
phylogenetic trees, we use the likelihood scoring function
to sample trees from regions of tree space with high likeli-
hood. However, it is often the case that the statespace is so
large (possibly infinite) that a required normalizing constant
cannot be computed efficiently.

More specifically, the algorithm relies on an underlying
stochastic process known as a Markov Chain to produce
samples from a distribution proportional to some function.
For phylogenetic trees, the state space is that of all possi-
ble phylogenies. The algorithm starts at a given tree and
randomly makes transitions between states through a two
step process. First, a local transition is “proposed” by the
algorithm. Next, based on the nature of that proposed tran-
sition, it is either accepted or rejected. If the new state is
rejected, the current state is repeated in the sequence. M-H
imposes restrictions upon these acceptance/rejectance tran-
sition probability densities. It is relatively simple to show
that such a process has a “limiting distribution” proportional
to the given objective function, if the transitions are handled
properly.

However, it is clear this process does not reach its lim-
iting distribution immediately. The first transitions in par-
ticular are very dependent on where the chain was started.
However, if one were to let the process continue for an in-
finite amount of time, the process would reach stationarity,
and the current tree would represent a tree sampled from the
desired distribution [26]. Therefore, the long-run frequen-
cies of sampled tree topologies are arbitrarily close to their
desired frequencies. The time it takes for the chain to come
close enough to stationarity is commonly referred to as the
“burn in” time [26].

M-H is used in constructing the Markov chain on tree
parameters, which include topologies and associated branch
lengths. We use transitions originally proposed by [26] as
follows.

GLOBAL with a Molecular Clock

This algorithm changes all branch lengths with every cycle.
Under the molecular clock assumption, the pair of distances
to adjacent leaves are maintained to be equal for each inter-
nal node.

LOCAL with a Molecular Clock

This algorithm modifies the tree only in a small neighbor-
hood of a randomly chosen internal branch, and each differ-
ent modification is made with different probabilities. It is
also implemented under the molecular clock assumption.
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Merits and Critiques

Compared to Yang and Rannala’s approach [49], this algo-
rithm can work with much larger trees. It generates a poste-
rior distribution of phylogenetic trees, giving it substantial
advantages over traditional ML algorithms. In addition, the
calculation of an acceptance probability of a proposed tree
sums over the unknown data at the internal nodes, a rapid
and accurate process with pruning algorithm [18]. Since
MCMC depends on the underlying likelihood model, data
sequences generated by the best fitted model would likely
differ from genuine data regarding composition of amino
acids, locations of stop codons, and other biologically rel-
evant features [26]. A more fundamental problem underly-
ing an MCMC algorithm is its ability to correctly identify
the posterior probabilities of the collection of highly proba-
ble tree topologies. It is difficult for a particular simulation
to visit new regions of parameter space once it gets stuck in
an old region [26]. Likewise, it is relatively difficult to tran-
sition between islands of high posterior probabilities. Thus,
this model may often yield inconsistent results when ap-
plied to the same sets of data. Finally, specification of a
prior distribution of model parameters can strongly influ-
ence the estimation of its posterior parameter distribution
[36]. Thus depending on the nature of the sequence data
being examined, a prior distribution of parameters must be
chosen carefully for MCMC algorithms to produce a rather
accurate posterior distribution.

Topology Search Algorithms

Thus far, we have introduced two methods for produc-
ing phylogenetic trees from multiple aligned sequences. We
present two more reconstruction algorithms that fall into a
greater class of tree “scoring” algorithms. Scoring algo-
rithms define an objective scoring function, and the user can
utilize a variety of algorithms to search through tree space.
In this study, we implemented two types of tree searching
algorithms.

The first approach, originally introduced by [17], is a
heuristic approach that begins with a tree that contains just
two randomly chosen species. The final tree is iteratively
built up from this simpler tree by adding one species at a
time. To add the kth species to a tree with k − 1 species,
the algorithm considers inserting this new species on each
internal edge. The scoring function is then executed on the
resulting 2k − 5 topologies, and the best is chosen. These
steps are repeated until all of the species in the observed
data set are added to the tree.

The second approach begins with a randomly con-
structed tree containing all n species, inserted arbitrarily,
and uses hill-climbing to arrive at a local optimum. The
algorithm proceeds as follows. We produce the “neighbor-
hood” of the current tree by swapping subtrees of every in-

ternal edge. For each internal edge, there are two unique
neighbors created. An outline of this approach is presented
here. . .

1. Construct initial tree and determine its score.

2. Construct a set of “neighboring trees” using Nearest
Neighbor Interchange [46].

3. If any neighboring tree is better than the current tree,
select the best one and use as starting point for new
round of rearrangements.

4. Repeat steps 2 and 3 until a tree that is better than all
of its neighbors is found. This tree is a local optimum.

The former method runs significantly faster due to its
smaller topology search space. However, the outcome of
the algorithm will depend on the order of addition of the
species. On the other hand, the latter method produces a
tree that is independent of species ordering, but the run time
is significantly worse because it requires more scorings of
larger trees.

Maximum Parsimony

Maximum Parsimony is a scoring method used for infer-
ring phylogenies. “The maximization of parsimony,” or pre-
ferring the simplest of otherwise equally adequate theories
is the guiding principle in this method. With the assumption
that evolution is inherently a parsimonious process, Maxi-
mum Parsimony values phylogenetic trees where the least
evolution is required to group taxa together [19].

The objective function we attempt to minimize is tree
“length.” Tree length refers to the minimum number of mu-
tations required to explain a given topology. To determine
the length of a given tree, Fitch’s Algorithm [20] is used.

1. Root the tree at an arbitrary internal branch.

2. Visit an internal node x for which no state set has been
defined, but where the state sets of x’s immediate de-
scendants (y,z) have been defined.

3. If the state sets of y,z have common states, then assign
these to x.

4. If there are no common states, then assign the union of
y,z to x, and increase tree length by one.

5. Repeat until all internal nodes have been visited and
return the length of the current tree.
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Merits

The principle of constructing a maximally parsimonious
tree takes advantage of Occam’s razor, which, in this
context, states that the topology which assumes the least
amount of total evolutionary events is the most likely to oc-
cur. Because mutations are relatively unlikely, the tree of
“minimal evolution” is likely a good approximation of the
actual evolutionary history of a a system.

The principles guiding the Maximum Parsimony ap-
proach frees the algorithm from making other assumptions,
unlike other models used in phylogenetic reconstructions.

Furthermore, Fitch’s algorithm lends itself exceptionally
well to parallelization. It runs in O(nmk), where n is the
number of leaves, k is the number of states, and m is the se-
quence length. Parallelization of the algorithm can reduce
the runtime to O(nk) since processing of each nucleotide
position is independent. Because a “read-only” tree traver-
sal must be executed for each site in a genome, according
to Gustafson’s Law of parallelization, the speedup we can
achieve on this portion of the program is exactly equal to
the number of processors we have available, because no
sequential operations must take place. Depending on the
size of the topology and the length of the genomes, either a
multi-core CPU or GPGPU implementation might be effec-
tive.

Critiques

Unfortunately, evolution is not a completely parsimonious
process, though it is assumed to be in Fitch’s original
method. Unlikely events, which can cause massive change
to occur in genomic sequences, do occur in organic evo-
lution. For instance, gene duplication is a type of muta-
tion that causes multiple copies of DNA segments to be re-
inserted into the original genome. Assuming such a muta-
tion is surely not the most likely explanation for evolution
in some cases, but it occurs nonetheless.

Fitch’s original algorithm for determining the minimum
number of mutations for a given topology does not pro-
duce edge weights. In other reconstruction algorithms, edge
weights offer a sense of evolutionary distance, and this in-
formation is simply not present in topologies reconstructed
using parsimony methods. (check to see if there are any
parsimony-based edge-weight generating algorithms)

Maximum Parsimony is not a statistically consistent
method in finding the true best tree given sufficient data.
Consistency refers to the monotonic convergence on the
correct answer with the addition of data, and Maximum Par-
simony lacks this consistency under the category of situa-
tions called “long branch attraction” [16]. Under these sit-
uations, there are high levels of substitutions for two char-
acters and low levels of substitutions for others. The more
data we collect, the more we tend towards finding the wrong

tree.
In addition, because Maximum Parsimony uses heuristic

methods in searching tree space, the most parsimonious tree
is not guaranteed to be obtained. However, this problem
is not unique to this algorithm; any algorithm that uses an
optimality criterion is subject to the same critique.

Maximum Likelihood

Scoring phylogenetic trees using a Maximum Likelihood
approach was first proposed by Felsenstein in 1981 [17].
Continued advancement in computational power has over-
come the method’s inherent high computational costs, and
the Maximum Likelihood approach became one of the most
popularly used methods of phylogenetic reconstruction. In
more recent history, the Maximum Likelihood approach
has been used to uncover the confounding evolutionary his-
tory of some species, such as the giant panda and dolphins
[48, 32].

The core concept of the Maximum Likelihood approach
is to find a phylogenetic tree that has the highest “likeli-
hood,” given an observed set of DNA sequences. Note that
the likelihood of a tree is the probability of a given tree
yielding the observed outcome; it is not the probability of a
tree being the correct one [17].

Assumptions

The Maximum Likelihood approach makes three assump-
tions to make computation faster and easier.

1. Nucleotide substitution happens site independently.
This means that the mutation rate of a nucleotide at
one location is not affected by any other nucleotide at
a different location.

2. Two lineages evolve independently after speciation. In
other words, any pair of two species will not affect the
evolutionary processes of each other.

3. Any lineage has the same probability of nucleotide
base substitutions. For example, if species A had 20
percent chance of cytosine mutating to thymine, the
same rate applies to species B.

Likelihood calculation

By the first assumption of site-independent evolution, the
likelihood of an entire tree can be calculated by computing
the likelihood values site by site, and multiplying them all
together. The likelihood of a tree at one DNA site is then
calculated by multiplying the probability of each segment
of a tree and the prior probability of the root. The probabil-
ity of a tree segment is computed using the segment length,
mutation rates, and the nucleotide bases of the two nodes in
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Figure 2: An example tree for likelihood calculation. This figure
is taken from the paper written by Feslenstein 1981

the segment. We do not know the nucleotide bases of the
internal nodes, since they represent common ancestors that
are now extinct. To account for this, the likelihood is com-
puted as the sum of all possible assignments of nucleotide
bases to the internal nodes [17]. The following equation
computes the likelihood of the tree in Figure 2.

L =
∑
s0

∑
s6

∑
s7

∑
s8

πs0Ps0s6(v6)Ps0s6(v6)Ps6s1(v1)

Ps6s2(v2)Ps0s8(v8)Ps8s3(v3)Ps8s7(v7)Ps7s4(v4)

Ps7s5(v5)

where Psxsy (v) denotes the probability of a nucleotide sx
changing to sy , given branch length v.

Branch optimization

To find a tree with the highest likelihood, we first start by
maximizing the likelihood of a topology. Note that, with
different branch length assignments, one topology can rep-
resent multiple different tree structures. By iteratively opti-
mizing the length of all branches within in a topology, we
can compute the Maximum Likelihood value that can be
achieved by the topology (see (Felsenstein 1998) for the op-
timization of a single branch). Using the topology searching
methods, we can then compare the Maximum Likelihood
values of topologies to find a topology whose Maximum
Likelihood is maximum. Then, the tree structure that gives
the Maximum Likelihood value for the best topology is out-
putted as a resulting phylogenetic tree.

Merits and Critiques

While the Maximum Likelihood method might produce
more accurate trees when compared to other reconstruc-
tion methods, it is computationally costly, mainly due to the
likelihood calculations in the branch optimization process.
The big-O runtime estimation of the algorithm is O(mn6)
with the progressive topology and O(kmn5) with the hill-
climb approach, where k is the number of hill-climb itera-
tions, m is the length of DNA sequences, and n is the num-
ber of species. The Maximum Likelihood algorithm also
assumes that the nucleotides mutate site-independently, and
thus, it does not accurately account for changes such as in-
sertion or deletion. Commonly accepted solutions to this
indel problem are (i) remove all sites in which any gap ap-
pears, (ii) assign an imaginary nucleotide for gaps, and (iii)
treat gaps as missing data. In this project, we used the op-
tion (ii), as Evans et al showed that the option (iii) can have
deleterious effects on the reconstruction [14].

Tree Comparison Algorithms

In order to properly compare alignment and reconstruc-
tion methods, we require methods of comparing their ulti-
mate outputs. We decided to use two different tree-distance
metrics; one focused on absolute distance between species
that utilized branch lengths, and one concerned with over-
all tree topology. Together, we believe these metrics sum-
marize the differences and similarities between trees effec-
tively. Note that these two metrics are part of a larger class
of comparison methods known as “dissimilarity metrics;”
this means that higher values indicate greater dissimilarity.

Quartet Distance: Topological Metric

To compare the similarity of topologies numerically, we
employ a “quartet” based method, first proposed for this
purpose by Estabrook, McMorris and Meacham [13]. A
quartet is a phylogenetic tree with only four species, di-
vided by two internal nodes as in Figure 3. To “reduce”
a phylogeny to a quartet given four species, first, remove
all non-desired species from the tree. Next, remove edges
and internal nodes shifting your remaining species appro-
priately until you are left with only a quartet. This quartet
should maintain some structural properties of the original
tree; the remaining species now represent reductions of sub-
trees in their original topological formations. Computing a
phylogenetic reduction is O(n) because it requires a single
traversal of the tree. Many previous studies have employed
quartet distance as a means of analyzing the similarity of
phylogenetic topologies in both theoretical an practical set-
tings. For instance, Puigbo et al. [35] utilize this metric
in their analysis of horizontal gene transfer in prokaryote
evolution.
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Figure 3: An example of a quartet, denoted as AB|CD.

To compute the quartet-distance between any two
topologies, say T1 and T2, that contain the same n species,
we compute all size-4 subsets {a, b, c, d} of the n species
and count the number of times the reduction of T1 to
{a, b, c, d} doesn’t match the reduction of T2 to {a, b, c, d}.
The brute force algorithm, as described, is O(n5) because
there exist O(n4) size-4 subsets of the n species, and for
each subset, two O(n) reductions must be computed.

Fortunately, there exist algorithms that reduce the time
complexity of this computation significantly; Brodal et al.
[4] present an O(nlogn) solution to the quartet-distance
problem, which represents the current state-of-the-art. For
our purposes, we utilize a simpler O(n3) solution, origi-
nally proposed by Christiansen et al. [7].

Central to this improved algorithm is the fact that, given
any three species {a, b, c} within a bifurcating phylogeny,
there is exactly one internal node such that the paths be-
tween 〈a, b〉, 〈b, c〉, and 〈a, c〉 intersect at that node. Delet-
ing such an internal node and its incident edges would re-
sult in three subtrees, each containing one of a, b, and c.
Denote the subtrees as T a, T b, and T c. For each species
x ∈ T a − {a}, we can determine that the quartet of our
original tree restricted to {a, b, c, x} will be ax|bc. Sym-
metric principles apply to T b and T c. While further algo-
rithmic detail is not necessary, this is the primary observa-
tion that allows us to reduce our time complexity to O(n3),
as we now restrict our consideration to species subsets of
size three.

Pairwise Path Distance: Branch Length Metric

Because quartet distance doesn’t account for branch
lengths and many of our tree reconstruction algorithms pro-

duce weighted topologies, a secondary metric that accounts
for this additional information is required. First proposed
by Williams and Clifford [47], we utilize a version of pair-
wise pathlength distance similar to that proposed by Steel
and Penny [42]. The focus of this comparison method is
computing all the pathlength between all pairs of species in
a given phylogeny.

More specifically, pairwise pathlength distance can be
computed as follows. Given two trees with associ-
ated branch lengths T1 and T2 each containing species
{S1, S2 . . . Sn}, consider a fixed ordering of all possible
species pairs 〈(S1, S2), (S1, S3) . . . (Sn−1, Sn)〉. Consider
~d1, ~d2, the ordered pairwise pathlength distances between
the species specified in the ordering for T1 and T2. Af-
ter normalizing these vectors such that each of their largest
components is equal to one, the pairwise path distance be-
tween T1 and T2, then, is given by

dpath(T1, T2) = || ~d1 − ~d2||2 (1)

where || · ||2 is the L2 (Euclidean) norm.
To compute pathlengths between all pairs of nodes in a

weighted graph, we use the Floyd-Warshall algorithm [21],
which performs the desired computation in O(|V |3) in a
general graph. In our case, O(|V |3) = O(n3), where n is
the number of species in a tree. This term dominates the
computation of pairwise path distance, and represents the
overall runtime of our approach, given two phylogenies.

Experiments

Methods

To compare our algorithms, we design two basic experi-
ments, one for synthetic data, and one for real data.

Synthetic Data Experiments

Our random data generator is capable of producing testing
examples 〈T,D〉 where T is a randomly generated phylo-
genetic tree containing n species, and D is a set of n se-
quences generated based on that synthetic tree. We can use
D as input to a total of 18 combinations of the 3 multiple
sequence alignment algorithms and the 6 reconstruction al-
gorithms. The output of these algorithms can be then be
compared to the true tree T and the tree using either of our
distance metrics.

Our random data generator is governed by several in-
put parameters, including the number of desired species,
the global mutation rate, and the starting sequence length.
Because of our limited computational resources, we were
only able to execute a subset of the large number of possi-
ble experiment. In total, we completed tree reconstructions

11



from all possible pairs of alignment and reconstruction al-
gorithms in the Cartesian product {Clustal-W, Center Star}
× {Neighbor Joining, Maximum Parsimony Progressive,
Maximum Parsimony Hill-Climbing, Maximum Likelihood
Progressive, Maximum Likelihood Hill-Climbing, MCMC
with likelihood}. MCMC was ran for 200 iterations.

We executed each of these 12 reconstruction methods
on 14 randomly generated datasets with varying number of
species. The randomly generated datasets we used had a to-
tal number of species between four and eight. Furthermore,
we have a constant mutation parameter and seed the muta-
tion process with sequences of length 200. This gives us
five distinct datasets.

For each of the five datasets and 12 reconstruction meth-
ods, we evaluate the performance of our algorithms over
14 trials. To evaluate their outputs, we compute the av-
erage quartet distances and the average pairwise path dis-
tances, normalized to [0, 1]. Notably, one of our recon-
struction methods, MP, does not produce meaningful branch
length predictions, so for any analysis associated with MPP
or MPH, we only use quartet distance.

Furthermore, we measure the average runtime of each al-
gorithm in each scenario to quantify the computational effi-
ciency of each approach.

Questions we address with experiment one include. . .

1. Do different algorithms perform significantly better or
worse when there are different numbers of species in
the dataset?

2. Does algorithm runtime depend on problem difficulty,
rather than problem size?

Real Data Experiments

We have a dataset 〈T,D〉 where T is the commonly ac-
cepted phylogeny for 53 species (50 primates and 3 non-
primates), and D are the DNA sequences of the mitochon-
drial cytochrome c oxidase subunit 1 (COX1) of those real
species [33]. We decided to use the phylogeny of great apes
because it is well-studied and commonly agreed upon [33].
This makes the commonly accepted ape phylogeny a great
candidate for a “ground truth” to compare against.

COX1 is a popular choice for phylogenetic reconstruc-
tion because it is highly conserved due to its involvement
with aerobic respiration [31]. To produce varying numbers
of species in our input data, we can select random subsets
of the 53 extant species for analysis.

1. 14 test examples {〈T,D〉} with 5 species.

2. 14 test examples {〈T,D〉} with 8 species.

Due to the computational intensity of the experiments,
we were only able to run Clustal-W alignments paired with
our six reconstruction method for each of these 28 datasets.

Questions we address with experiment one include. . .

1. Do the random data results match the real data results?

2. Which algorithm performs fastest on the real data?

3. Which algorithm produces the most accurate tree on
the real data?

Reconstruction Hypotheses

We hypothesize that the method with Center Star and
Neighbor Joining has the shortest average running time on
randomly generated data due to its algorithmic simplic-
ity. We believe that Clustal W/Maximum Likelihood and
Clustal/Markov Chain Monte Carlo will perform better than
other methods in terms of the accuracy of tree reconstruc-
tion on the random data because these algorithms make
fewer “binding” local decisions that might cause a build-up
of errors.

Parallel Experiment

We execute the sequential and parallel version of our code
on 4 randomly generated datasets consisting of four, five,
six and seven species, and measure the resulting speedup
on a machine with 8 processors. Of our implementations,
Neighbor Joining does not assume site independence and it
is consequently excluded from our analyses. Because each
algorithm’s asymptotic runtime is simply multiplied by a
constant factor representing genomic length in accordance
with the site independence assumption (i.e. an O(n2) com-
putation for a single site becomes an O(mn2) computation
form sites) we suspect that speedup between our algorithms
will be roughly the same, and consistent over varying num-
bers of species.

Results

Synthetic Data Experiments

• Pairwise Distance. Figure 4 illustrates the accuracy of
our tree outputs in terms of pairwise distance. Notably,
Neighbor Joining and Maximum Likelihood Progres-
sive consistently did better than other reconstruction
algorithms. On the other hand, the trees produced by
the Markov Chain Monte Carlo method did signifi-
cantly worse than trees produced by any other recon-
struction method. Choice of multiple sequence align-
ment algorithms did not have a visible effect on the
accuracy of a resulting tree.

• Quartet Distance. The results for the quartet distance
analysis is represented in Figure 5. Reconstruction
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with Neighbor Joining, Maximum Parsimony Progres-
sive, and Maximum Likelihood Progressive methods
outperformed other methods. Again, choice of multi-
ple sequence alignment algorithms did not have a visi-
ble effect on the accuracy of a resulting tree.

Real Data Experiments

Due to an unexpected bug found late in our Maximum Like-
lihood algorithm and the constraint of time, we were not
able to obtain complete results for the real data experiments.
However, experiments are running in progress and results
will be available soon.

Parallel Experiment

Results from our parallel tests are illustrated in Figure 6.
Clearly, our results were not consistent with our hypothe-
sis; speedup deviated significantly from the theoretical 7-8x
for all algorithms. This is an indication that parallel theory
does not always align with parallel implementation and sig-
nificant care must be taken to achieve optimal performance.

The speedup of MLH and MLP were fairly consistent
over different numbers of species, but only a 3x speedup
was achieved. MPH and MPP were no faster (and some-
times slower) than their sequential counterparts; this is
likely a result of their relatively low runtimes. In these
cases and at this scale, the overhead associated with cre-
ating threads counteracted the parallel speedup attained.

Most interesting were our speedup results for MCMC.
Here, speedup decreased significantly as the number of
species increased. Because MCMC is parallelized in the
same way as MLH and MLP (all three methods use a par-
allel version of the likelihood computation) this result was
particularly unexpected.

Running Time

Runtime analysis of both synthetic (Figure 8) and real data
(Figure 9) suggests the following:

1. Neighbor Joining gave the fastest performance.

2. Maximum Likelihood performed worse than Maxi-
mum Parsimony.

3. Monte Carlo Markov Chain performed slower than
Maximum Likelihood for smaller synthetic data sets,
and faster than Maximum Likelihood hill-climbing for
bigger synthetic data sets.

These results are similar when using Center Star and MUS-
CLE alignment algorithms.
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Figure 6: Parallel speedup of our implementations on several test
synthetic datasets (bp = 200) of varying size on a machine with 8
processors. We allowed OpenMP to use 64 threads.

4 5 6 7 8
Number of Species

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
or
m
al
iz
ed
 P
ai
rw

is
e 
P
at
h
le
n
gt
h
 D

is
ta
n
ce

PPLD vs. Number of Species for CW
MLH
NJ
MLP
MC

Figure 7: Pairwise pathlength distance of several methods over
varying numbers of species. Results indicate that MCMC and
MLH might become relatively less accurate as the input size in-
creases.

Discussion

Tree Accuracy

In terms of pairwise distance metric, ML Progressive out-
performed ML Hill-climb. The only difference between the
two reconstruction algorithms was their topology search-
ing method: progressive vs. hill-climb approach. The dif-
ference in performance between these two algorithms can
be explained as follows. The downside of the progressive
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Figure 8: Runtime comparison of reconstruction algorithms on
synthetic data sets using Clustal-W as our alignment algorithm.
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Figure 9: Runtime comparison of reconstruction algorithms on
real data sets using Clustal-W as our alignment algorithm.

approach is that it makes local decisions when searching
through the space of possible topologies, and thus, a result-
ing tree topology can sometimes be unreliable. However,
this does not have a big impact when trees are evaluated on
pairwise distance, because it only measures the distances
between pairs of leaf nodes; pairwise distance does not ac-
count for the position of a node within a tree. On the other
hand, the hillclimb approach can sometime gets caught in
a local optimum. In our case, it is likely that the downside
of the hillclimb approach had a larger impact on resulting
trees.

For quartet distance metric, Maximum Parsimony also
achieved results with equally high accuracies as NJ and ML

methods. This is in agreement with [25], which suggests
that under low nucleotide substitution rates, NJ, MP, and
ML should be equally successful. Hill-climbing approaches
performed significantly worse than progressive approaches
in terms of quartet distance metric. Again, this is likely due
to the fact that hill-climbing approaches can sometimes only
find the local optimal topology rather than the true global
optimum.

NJ produced accurate results in our study for both pair-
wise distance and quartet distance. This was in accordance
with [37], which suggested that NJ performs slightly bet-
ter than ML methods under constant nucleotide substitution
rates.

MCMC performed significantly worse than other recon-
struction algorithms in terms of both quartet and pairwise
distance metrics. This is likely because we did not run the
algorithm long enough to find a reasonable global optimum.
In order to find trees close to the global optimum in our sam-
ple space, the suggested number of iterations was 2000 [26].
Due to the time constraints in our project, we only ran 200
iterations.

In Figure 7, we compare the correctness of tree output of
various algorithms when problems increase in size. Notably
MCMC becomes increasingly less accurate when the num-
ber of species increases. This is likely a reflection of the
fact that tree space is less able to be explored in a fixed 200
iterations when more species are added. Furthermore, using
likelihood and hill climbing appears to become less correct
and more variable for larger problems as well. Because the
objective function increases significantly in complexity as
the number of species increases, it’s likely the case that get-
ting caught in local optima becomes increasingly common.
On the other hand, NJ and MLP perform relatively consis-
tently, indicating their potential accuracy on larger datasets.

Running Time

The expected efficiency of NJ is consistent with our experi-
mental results. ML, on the other hand, is considered compu-
tationally costly with progressive topology (O(mn6)) and
with the hill-climb approach (O(kmn5)) due to the branch
optimization process. MCMC, which uses ML’s likelihood
calculations, is also computationally expensive. These the-
oretical observations also agree with our experimental re-
sults. MP had a performance speed that fell in between NJ
and ML, which also fits our expectation.

Parallelization

Our parallelization results were promising but highly incon-
sistent. The main downside of our consideration was its rel-
ative simplicity; parallelizing in accordance with the site in-
dependence assumption is a good place to start, but it is only
a first step. Many other aspects of these algorithms, such as
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recursive tree traversals, can be easily and completely par-
allelized, and it would be exciting to pursue new avenues of
optimization, particularly on specialized hardware (MapRe-
duce clusters, GPGPUs) in future work.

The results for MCMC, where speedup decreased with
increasing input size, were among the most intriguing in
our entire study. Perhaps, in this case, the sequential ver-
sion of this algorithm benefits from some under-the-hood
compiler optimization that the other likelihood-based meth-
ods (MLH, MLP) do not.

In total, our investigation of parallelism in phylogenetic
reconstruction is a small first step towards understanding
the complexity involved in this rich field of optimization.

Conclusion

Based on our experiments with both synthetic and real
data, and our analysis of both run-time efficiencies and the
accuracies of our algorithms, we conclude that for data sets
with similar properties to those of our data (i.e. short se-
quences, low and constant nucleotide substitution rates),
Neighbor Joining should be used in order to achieve the best
efficiency and accurate results. Maximum Likelihood with
progressive tree search creates equally accurate trees, but is
far more computationally expensive.

However, due to the complexity of the real-world data
sets and their varying characteristics, algorithms should be
carefully chosen in order to obtain accurate results. Based
on our results, we cannot determine the total superiority
of a specific reconstruction method. In addition, there is
no guarantee that the details of our implementation match
those in the literature we surveyed. Nonetheless, our study
provides a comparative approach that future research alike
can undertake.

In the future, we would like to examine more types of
synthetic data (perhaps varying mutation characteristics)
and optimize our implementations in accordance with mod-
ern advancements to get a better sense of the current state
of the field.
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