Recovering Camera Location, Camera Orientation, and World Marker Locations From Photographs

Jack Goldfeather
February 24, 2010

1 Least Square Fits for Quadratics

Let

\[F(x_1, ..., x_n) = \sum_{i=1}^{k} (a_{0i} + a_{1i}x_1 + ... a_{ni}x_n)^2 \]

That is, \(F(x_1, ..., x_n) \) is the sum of squares of linear functions in \(n \) variables. This function is never negative, and a common task in what follows is to find \(X = (x_1, ..., x_n) \) that makes \(F(x_1, ..., x_n) \) as close to 0 as possible. There are two versions of this which we consider separately.

1.1 Method A: \(a_{0i} = 0 \) for all \(i \) and \(X \) constrained to be a unit vector

1. Square everything out and collect terms to write

\[F(x_1, ..., x_n) = \sum_{i=1}^{n} b_{ii}x_i^2 + \sum_{i=1}^{n} \sum_{j=i+1}^{n} b_{ij}x_i x_j \]

2. Create the symmetric matrix \(C = (c_{ij}) \) from these coefficients by defining \(c_{ii} = b_{ii}, \ c_{ij} = b_{ij}/2 \) for \(i < j \), and \(c_{ij} = c_{ji} \) for \(j < i \). For example if \(F(x_1, x_2) = b_{11}x_1^2 + b_{22}x_2^2 + b_{12}x_1x_2 \) then

\[C = \begin{pmatrix} b_{11} & b_{12}/2 \\ b_{12}/2 & b_{22} \end{pmatrix} \]

Since \(C \) is a symmetric matrix, by a theorem in linear algebra, the eigenvalues of \(C \) are all real, and the associated eigenvectors are orthogonal to each other. Suppose the eigenvalues are \(\lambda_1 \leq \lambda_2 \leq ... \leq \lambda_n \) and the associated unit eigenvectors are \(v_1, ..., v_n \). If \(P \) is the matrix whose columns are these eigenvectors and \(D \) is the diagonal matrix of eigenvalues, the Diagonalization Theorem in linear algebra says that:

\[C = PDP^{-1} \]

3. It can be proved from this that \(X = v_1 \), the unit eigenvector associated to the \textit{smallest} eigenvalue, minimizes \(F \) as described above.

1.2 Method B: No conditions on \(a_{0i} \) or \(X \)

The minimum of the multivariable function \(F \) occurs where

\[\nabla F(X) = \left(\frac{\partial F}{\partial x_1}, ..., \frac{\partial F}{\partial x_n} \right) = 0 \]

Since \(F(X) \) is quadratic, \(\nabla F(X) = 0 \) is a system of \(n \) linear equations in \(n \) unknowns which can be solved using any linear system solver. There should be only one solution since \(F \) has no maximum value.
2 Rotation and Translation

Let R_j be the (unknown) rotation matrix from world to camera j coordinates and let T_j be the (unknown) translation vector from the world origin to camera j origin. We can find R_j and T_j provided:

1. We can identify several vectors in the cameras view that are known to be parallel to the world coordinate axes. In a room, if we fix the world origin to be a corner of the room, we can use lines along walls and windows, etc. Let $X = \{X_1, ..., X_{n_1}\}$, $Y = \{Y_1, ..., Y_{n_2}\}$, and $Z = \{Z_1, ..., Z_{n_3}\}$ be the sets of these vectors parallel to the three coordinates axes, respectively. This alone allows us to compute R_j.

2. We have measured the world positions of a set of points $P = \{P_1, ..., P_s\}$ and can identify them in at least 2 camera images. In this case, we can find T_j by solving a linear system of 3 equations in 3 unknowns.

3. We can only identify the set of points $P = \{P_1, ..., P_s\}$ in at least 2 camera images. In this case, we can find T_j and the coordinates of all the P_i by solving a large system of linear equations. This is likely to be less accurate than the previous method.

2.1 Finding R_j

In Figure 1, uppercase letters indicate a vector expressed in world coordinates and lowercase letters indicate a vector expressed in camera coordinates. Vector V is one of the vectors parallel to a world coordinate axis. We will assume in what follows that $V = X_1$, a vector parallel to the x-axis, since the other cases are similar. The vector \vec{vc} is the image of this vector in the camera and its endpoints (p_1, p_2) and (q_1, q_2) are the measured (i.e. known) camera pixel coordinates. If the focal length of the camera is F, then

$$\vec{pc} = (p_1, p_2, F) \quad \vec{qc} = (q_1, q_2, F)$$

Then the normal to the plane passing through the camera origin and containing these two vectors can be computed:

$$\vec{nc} = \vec{pc} \times \vec{qc}$$

Hence to each vector in $X_i \in X$, we can associate a normal vector $m_i = \vec{nc}$ to the plane through the camera origin and X_i. We convert X_i into camera coordinates by multiplying it by the yet unknown rotation matrix R_j. That is R_jX_i is perpendicular to \vec{m}_i so

$$m_i \circ (R_jX_i) = 0$$ \hspace{1cm} (1)
Now let
\[R_j = \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix} \]

Any rotation matrix has the property that its columns are unit vectors. Since \(X_i = (s_i, 0, 0) \), if we let \(\bar{m}_i = (a_i, b_i, c_i) \) and plug into equation (1) we obtain:

\[(a_i r_{11} + b_i r_{21} + c_i r_{31}) = 0 \]

Given that we have measured the vectors \(\bar{m}_i \), we won’t, in general, be able to find a simultaneous solution \((r_{11}, r_{21}, r_{31})\) for all \(i \). Instead we try to find a solution that minimizes

\[\sum_{i=1}^{n_1} (a_i r_{11} + b_i r_{21} + c_i r_{31})^2 \]

Method A from Section 1 can be used to find a best estimate of the first column of \(R_j \). Repeating this process for the vectors in \(Y \) and \(Z \) gives us best estimates for the 2nd and 3rd columns of \(R_j \).

2.2 Finding \(T_j \)

In Figure 1, observe that the vectors \(T - P \) and \(T - Q \) also lie in the plane containing \(V \) and the camera origin. If we let \(P = P_i \) and \(Q = P_k \), two of the measured world points, then, as in the previous section, we can find a vector \(\bar{m}_{ik} \) normal to the plane containing the camera origin and the vector connecting \(P_i \) to \(P_k \). We convert these vectors into camera coordinates using the (now known) rotation matrix \(R_j \). So we know that

\[\bar{m}_{ik} \circ R_j(T_j - P_i) = 0 \quad m_{ik} \circ R_j(T_j - P_k) = 0 \]

Again, we try to minimize

\[\sum_{i \neq k} (\bar{m}_{ik} \circ R_j(T_j - P_i))^2 + (m_{ik} \circ R_j(T_j - P_k))^2 \]

Since \(m_{ik}, R_j, P_i, \) and \(P_k \) are all known and \(T_j = (t_1, t_2, t_3) \), equation (6) reduces to a quadratic expression in \(t_1, t_2, \) and \(t_3 \). That is, we need to minimize a function of the form

\[f(t_1, t_2, t_3) = c_1 t_1^2 + c_2 t_2^2 + c_3 t_3^2 + c_4 t_1 t_2 + c_5 t_1 t_3 + c_6 t_2 t_3 + c_7 t_1 + c_8 t_2 + c_9 t_3 + c_{10} \]

A best estimate can be found by using Method B from Section 1.

If the coordinates of the points \(P_i \) are not known, then equation (6) still is quadratic in the coordinate variables \(U = (t_1, t_2, t_3, P_{11}, P_{12}, P_{13}, ..., P_{31}, P_{32}, P_{33}) \), so we can still solve a linear system in \(3s + 3 \) unknowns. In this case we will get a solution of the form \(s_j U_j \). That is, we will only find a solution up to a scale factor.

3 Finding the World Coordinates of Markers

Once the camera parameters for each camera are computed (focal length \(F_j \), rotation matrix \(R_j \), translation vector \(T_j \)) we can find the world coordinates of any marker by knowing its pixel coordinates in at least 2 cameras.

Let \(p_j = (x_j, y_j, F_j) \) where \((x_j, y_j) \) is the pixel address of the marker in camera \(j \) and \(F_j \) is the focal length of camera \(j \). Then \(X_j = R_j^{-1} p_j \) is the vector \(p_j \) expressed in world coordinates. Since \(T_j \) is the world coordinate expression for the camera \(j \) origin, the parametric equation of the line passing through the camera origin \(j \) in the direction of \(X_j \) is given by

\[P_j(t_j) = T_j + t_j X_j. \]

All we know now is that our marker lies somewhere along this line.

If we can find \(t_i \) and \(t_j \) such that \(P_i(t_i) = P_j(t_j) \) for cameras \(i \) and \(j \), this common point is our correct 3D world location of the marker. Of course, due to measurement errors, this is not likely, so instead we minimize the square-sum error of all the lengths of vectors \(P_i(t_i) - P_j(t_j) \). If there are \(N \) cameras that can see the marker, we minimize the function

\[F(t_1, ..., t_N) = \sum_{i=1}^{N} \sum_{j=i+1}^{N} (|P_i(t_i) - P_j(t_j)|)^2 = \sum_{i=1}^{N} \sum_{j=i+1}^{N} (|T_i - T_j + t_i X_i - t_j X_j|)^2 \]

which is quadratic in \((t_1, ..., t_N) \) and so can be minimized using Method B from Section 1.